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Abstract	

Amid	 urgent	 climate	 goals,	 the	 building	 sector’s	 high	 energy	 use	 demands	 smarter	
design	 and	 operation	 strategies.	This	 paper	 critically	 explores	 recent	 peer‐reviewed	
literature	on	AI‐enhanced	Building	Information	Modeling	(BIM)	systems	 for	real‐time	
energy	performance	simulation,	highlighting	how	artificial	intelligence	(AI)	techniques	
are	integrated	with	BIM	to	improve	building	energy	efficiency,	reviewing	global	studies	
that	 combine	 BIM‐based	 energy	 modeling	 with	 machine	 learning,	 optimization	
algorithms	and	digital	twin	frameworks.	Key	findings	indicate	that	AI	can	dramatically	
accelerate	energy	simulations	and	enable	real‐time	predictive	analysis	 in	both	design	
and	operational	phases.	Surrogate	models	(neural	networks	and	gradient‐boosted	trees)	
trained	 on	 BIM‐generated	 data	 achieve	 prediction	 accuracies	 above	 90%,	 providing	
instant	feedback	on	design	alternatives.	In	operation,	AI‐driven	digital	twins	linking	BIM	
with	 IoT	 sensor	data	allow	 continuous	monitoring	and	predictive	 control	of	building	
systems.	These	 approaches	 have	 led	 to	 significant	 energy	 savings	 (often	 >10%)	 and	
support	 net‐zero	 energy	 goals.	However,	 challenges	 persist	 in	 data	 interoperability,	
model	 generalization	 and	 industry	 adoption.	 This	 paper	 contributes	 an	 integrated	
perspective	on	current	methods,	empirical	outcomes	and	emerging	themes	(explainable	
AI	and	uncertainty	analysis),	outlining	 future	research	directions	to	 fully	realize	real‐
time	energy	simulation	in	smart	sustainable	buildings.	
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1. Introduction		

Energy efficiency in buildings has become a paramount concern globally as buildings account 
for roughly 36–40% of annual energy consumption and a significant share of carbon emissions 
(Min et al., 2022). Improving building energy performance is crucial for meeting climate targets 
such as the Paris Agreement. Building Information Modeling (BIM) is now an established tool 
in the architecture, engineering and construction (AEC) industry, providing detailed digital 
representations of a building’s geometry and systems throughout its lifecycle. According to Liu 
et al.’ (2019), BIM facilitates traditional building performance simulations (BPS) including 
energy modeling, by supplying rich data on building envelope, materials and systems. 
Conventionally, engineers use BIM exports in physics-based simulation engines (EnergyPlus) 
to predict energy consumption, thermal comfort, daylight and key performance metrics 
(Gourlis, 2023). However, these simulations can be computationally intensive and are typically 
done in batch processes for static scenarios, rather than continuously in real time. In parallel, 
the rise of artificial intelligence (AI) and data-driven methods offers new opportunities to 
enhance BIM-based analysis. AI techniques particularly machine learning (ML) algorithms can 
learn complex patterns from simulation data or real sensor data, providing fast predictive 
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models (surrogates) of building performance (Cecoon & Villa, 2021). This convergence has 
given birth to the concept of AI-enhanced BIM intelligent systems and platforms where BIM’s 
structured building data is combined with AI algorithms to simulate and even optimize energy 
performance more efficiently. A related development is the digital twin, a virtual replica of a 
physical building that continuously receives data from IoT sensors and uses AI to mirror and 
predict the building’s performance in real time (Sepasgozar et al., 2023). These innovations 
promise to shift energy analysis from a one-off design exercise to a continuous, adaptive 
process across the building lifecycle. 
Moreover, traditional energy modeling workflows face limitations that AI integration aims to 
overcome. First, exploring multiple design alternatives for energy efficiency is time-consuming; 
each option must be individually modeled and simulated, leading to a narrow search of the 
design space (Tsikas et al., 2025). This is problematic in early design when decisions have 
profound impacts on future energy use. Second, conventional simulation tools often operate in 
silos, not fully interoperable with BIM, causing manual data transfer and potential errors 
(Panagoulia & Rakha, 2023). Third, building operations rarely adhere to design assumptions 
where real occupancy patterns and weather deviations cause a performance gap between 
predicted and actual energy use (Mahdavi et al., 2021). Static simulation models struggle to 
adapt to these dynamic conditions, through introducing AI, researchers hope to automate and 
accelerate simulations and to enable real-time performance assessment, thereby supporting 
more informed decision-making. For example, a trained ML model can instantly predict annual 
energy use for a given set of design parameters, allowing designers to get immediate feedback 
on efficiency improvements as identified in Seyedzadeh et al.’s (2018) literature review. 
Similarly, an AI-driven digital twin can continuously forecast a building’s energy demand and 
optimize control settings (like HVAC adjustments) in response to live data (Tsikas et al., 2025). 
Thus, the rationale for this research is that combining BIM with AI has the potential to 
significantly improve both the speed and intelligence of energy performance simulations, which 
is critical for sustainable design and operations in an era of smart cities and climate urgency. 

2. Current	Situation	of	Study		

Research interest in integrating AI with BIM for energy applications has surged in recent years. 
De Wilde (2023) suggests that the fields of AI, machine learning and digital twins have rapidly 
permeated the building simulation domain, which historically relied on physics-based models. 
In fact, digital twin concepts only started appearing in building performance literature around 
2017, but have grown exponentially since 2018 as figure 1 illustrates this trend where 
academic publications on digital twins for building energy have increased dramatically, 
especially in leading countries like China as increasing studies now explore AI applications at 
different stages of the building lifecycle. In early-design phases, researchers have developed 
frameworks to link BIM with automated energy simulations and optimization. Khan et al. (2024) 
propose a system that generates a dataset via BIM-driven simulation, trains an ML model to 
predict energy outcomes, and then runs multi-objective genetic algorithms for design 
optimization. Such approaches have achieved high prediction accuracy (R^2 > 0.93) and 
identified design improvements yielding ~13% energy savings in case studies. Other works use 
surrogate models to evaluate numerous design variants rapidly, as Tsikas et al. (2025) trained 
regression, decision tree, random forest and neural network models on BIM-generated data for 
337 residential building cases, finding that an ANN could best predict energy use instantly with 
minimal error.  
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Figure	1.	Trends in publications on digital twin, building and energy over the years (Sghiri et 

al., 2025) 
 
Additionally, there is growing interest in applying AI during building operation through digital 
twins. Pioneering projects (Agostinelli et al. 2021 in Italy) have created district-scale digital 
twins where BIM is integrated with real-time sensor data and AI analytics to manage energy 
systems in real neighborhoods. These efforts showed that AI algorithms can optimize energy 
flows while maintaining comfort by evaluating renewable energy and storage scenarios to 
move a community closer to net-zero energy consumption. Despite this progress, the adoption 
gap in practice remains notable. Literature reviews highlight that while dozens of conceptual 
frameworks and pilot studies exist, few have been fully implemented at scale in industry 
settings according to Sghiri et al. (2025). The integration of BIM, building energy modeling 
(BEM) tools, IoT platforms and AI is also highly complex, often requiring bespoke solutions. 
There is also skepticism regarding reliability where facility managers may be wary of trusting 
“black-box” AI predictions for critical decisions like HVAC control without clear explanations or 
proven robustness, hence emerging research into explainable AI in this domain (Kahn et al., 
2024). Additionally, data availability and quality can be limiting factors where AI models need 
rich training data, which in design can be synthetically generated via simulations, but in 
operation relies on extensive sensor deployments. These gaps indicate that further research 
and development are needed to translate AI-enhanced BIM from promising concept to common 
practice. 

3. Research	Gap,	Aims,	Objectives	and	Contributions	

While current research demonstrates the feasibility and benefits of AI-integrated BIM systems, 
significant gaps remain in knowledge and practice. One gap is a lack of unified frameworks and 
standards for interoperability: many studies use custom workflows to connect BIM models with 
energy simulation engines and AI toolkits, which may not generalize easily (Agostinelli et al., 
2021). For example, transferring a BIM model into a simulation requires handling geometry 
and material data (often via formats like gbXML or IFC), and mismatches in data schemas can 
impede automation (Kahn et al., 2024). Another gap lies in real-time performance where true 
real-time energy simulation would entail continuously updating models with live data and 
instantly computing control actions, yet most case studies are still in quasi-real-time (running 
predictions on intervals of minutes or hours) and often focus on either the design stage or 
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operational stage, but not both. Thus, bridging this design-operation divide is an open challenge. 
Moreover, there is a research gap in validating AI-driven predictions against long-term actual 
building performance, as few studies report on multi-year deployments of digital twins or how 
AI models degrade or adapt over time in a changing building context. This gap in longitudinal 
evidence makes it harder to quantify the reliability and ROI of such systems. Finally, much of 
the literature has been technology-driven, with less focus on human and organizational factors, 
for instance, how to effectively present AI simulation results to architects or facility managers 
(usability) and how to upskill practitioners to trust and leverage these advanced tools. Overall, 
the current body of research lacks a comprehensive understanding of how to standardize, scale 
and sustain AI-enhanced BIM energy simulation in real-world projects, which this report 
addresses by synthesizing findings and pointing out these critical needs. 
The aim of this report is to provide a comprehensive academic synthesis of AI-enhanced BIM 
systems for real-time energy performance simulation. These objectives are designed to aid the 
achievement of the proposed research aim. 1) To review the methods researchers have used to 
integrate AI (machine learning, optimization algorithms) with BIM and energy modeling, 
covering both design-phase and operation-phase applications. 2) To analyze empirical results 
from case studies and experiments worldwide, demonstrating the effectiveness of AI-enhanced 
BIM (such as accuracy gains, time savings, or energy reductions achieved). 3) To identify 
common themes, benefits and challenges found across the literature like faster simulations and 
debates such as the trade-off between model accuracy and interpretability. 4) To formulate 
future research directions and recommendations that can guide academic inquiry and practical 
development toward more effective real-time energy simulation in smart building systems. By 
fulfilling these objectives, this paper contributes to academic knowledge by consolidating 
scattered findings from the rapidly evolving intersection of BIM, AI and building energy 
simulation. While prior reviews have examined related areas in data-driven building energy 
prediction and BIM-based performance modeling (Tsikas et al., 2025), this synthesis uniquely 
focuses on the convergence of AI with BIM for real-time simulation, reflecting the state-of-the-
art up to 2025. Practically, the insights presented can inform stakeholders including architects, 
engineers, energy modelers and facility managers about the potential of AI-enhanced BIM 
workflows and what benefits can be expected. By also discussing challenges, this report guides 
technology developers and policymakers on where to focus efforts, thereby supporting both 
the academic discourse and the AEC industry’s advancement toward smarter, energy-efficient 
buildings. 

4. Findings	and	Discussion		

Bringing together the findings from the literature, several key themes in AI-enhanced BIM 
systems for real-time energy simulation are identified including (1) Accelerated simulation and 
design optimization via AI surrogates, (2) Digital twin implementations for real-time 
monitoring and control, (3) Data integration and interoperability challenges, (4) Model 
accuracy, validation and explainability, and (5) Energy performance outcomes and 
improvements achieved. The following sections will discuss each, highlighting consensus, 
debates, and representative studies and include empirical figures to illustrate these concepts. 

5. Accelerating	Simulation	and	Optimizing	Design	with	AI	Surrogates	

One of the clearest benefits reported is the drastic acceleration of performance evaluation 
during building design by using AI as a surrogate for physics-based simulations. In conventional 
design processes, evaluating the energy impact of different design choices (orientation, form, 
materials, HVAC systems) requires separate simulation runs for each variant, which is labor-
intensive (Di Santo et al., 2023). AI models can learn from a set of simulated cases and then 
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predict outcomes for new design inputs almost instantly. This enables what-if analysis and 
optimization to be done in minutes rather than days. Numerous studies validate this approach, 
as Tahmasebinia et al. (2022) integrated BIM tools with regression modeling to evaluate green 
building designs; their approach identified certain building shapes (notably triangular forms) 
as particularly energy-efficient, in line with simulation results. Tsikas et al. (2025) directly 
compared multiple ML algorithms as surrogates and found ANN models provided the best 
fidelity, with error distributions tightly clustered around zero, outperforming simpler methods 
like linear regression. Figure 2 shows the error distribution of such models from their study, 
The curves represent error frequency (density) for four models: Statistical Regression (grey), 
Decision Tree (orange), Random Forest (green) and Artificial Neural Network (blue). The ANN 
shows errors tightly centered around 0, indicating high accuracy in reproducing detailed 
simulation results. In contrast, simpler models like regression have broader distributions (e.g. 
±1 MWh error range), emphasizing the superior predictive performance of advanced AI 
techniques. The ANN’s error curve is sharply peaked at zero, indicating very minor deviation 
from the ground-truth simulation results, whereas other models (basic statistical regression) 
show broader error spread (under- or over-predicting in some cases). This high accuracy 
means designers can trust the surrogate model to evaluate design tweaks in real time.  
 

 
Figure	2.	Prediction error distributions for various surrogate models trained to estimate 

building energy performance from BIM data (Tsikas et al. 2025). 
 
Similarly, Khan et al. (2024) reported R² values above 0.93 for an optimized LightGBM model 
predicting energy use, leveraged this in an optimization loop to improve a building’s design. 
The ability to incorporate multi-objective optimization is another advantage, as AI surrogates 
compute results so fast that algorithms can iterate thousands of design options to find Pareto-
optimal solutions balancing energy, cost and. Other studies echo these successes including Li et 
al. (2024) used an orthogonal testing method with BIM and found optimal combinations of 
envelope parameters that reduced annual energy by significant margins (over 20% in some 
scenarios). In all, there is strong agreement that AI-enhanced BIM tools markedly speed up the 
exploration of design alternatives, allowing more thorough optimization for energy efficiency 
at early stages when changes are easier and cheaper to make. Alongside these benefits, a point 
of discussion is model generalizability. While an AI model can accurately predict within the 
range of designs it was trained on, several authors caution that predictions may be unreliable 
if a new design falls outside the training data distribution (Tsikas et al., 2025). This raises the 
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importance of building robust and diverse training datasets (covering various building types, 
climates) or using adaptive learning.  
Some debate also exists on the choice of algorithms, for instance, an ANN might give best raw 
accuracy but can be a “black box,” whereas a decision tree or simpler regression might be more 
interpretable for designers (Hassija et al., 2024). Recent work strives to get the best of both 
worlds by employing explainable AI (XAI) techniques, as Khan et al. (2024) incorporated the 
LIME explanation tool with their ML model to identify which input features (design variables 
like HVAC efficiency, window-to-wall ratio, insulation levels) were most influential on 
predicted outcomes. This is valuable as it provides human designers insight into why the model 
suggests certain design improvements, thus building trust in the AI recommendations. In 
summary, recent empirical literature concurs that AI surrogates are a game-changer for early 
design analysis, as ongoing research is focusing on enhancing their reliability (through broader 
training and uncertainty analysis) and interpretability (through XAI), which will be crucial for 
industry uptake. 

6. Real‐time	Monitoring	and	Control	Via	Digital	Twins		

The second major theme is the use of AI within BIM-based digital twins for operational energy 
management. Traditional BPS is largely an offline, design-stage activity. Digital twins extend 
BIM into the operational phase by linking it with live data streams, essentially turning the static 
BIM model into a dynamic simulation that runs in parallel with the real building (Wang et al., 
2022). The findings across studies consistently show that digital twins enable real-time or near-
real-time monitoring, anomaly detection and even predictive control of building systems. For 
example, a digital twin can continuously simulate expected energy performance under current 
conditions (weather, occupancy) and flag deviations if the actual consumption drifts, indicating 
a fault or inefficiency (Clausen et al. 2021 demonstrated this for public buildings, using a twin 
to improve energy efficiency and occupant comfort by detecting irregular HVAC behavior). AI 
is the “brain” in these systems: machine learning models process the incoming sensor data to 
make predictions (e.g. tomorrow’s cooling load by Abbasabadi & Ashayeri, 2024) or decisions 
(e.g. adjust setpoints to shave peaks). A clear consensus is that real-time analytics are essential 
because building performance is highly dynamic, static schedules or models result in either 
wasted energy or comfort issues when conditions change unexpectedly (Boje et al., 2023). 
Studies in different regions report positive outcomes from AI-driven real-time control. In the 
Rome digital district case (Agostinelli et al. 2021), the AI-enhanced twin allowed evaluating 
various energy management scenarios (like increasing solar PV capacity versus adding battery 
storage) and provided an optimized strategy that raised the self-consumption of renewable 
energy and met near-zero energy targets for the community. Another example by Péan et al. 
(2022, as reported by Arowoiya et al. 2024) involved a digital twin for a university building 
which, through reinforcement learning (a form of AI), learned to pre-cool or pre-heat the 
building in anticipation of occupancy, cutting down peak grid load without sacrificing comfort 
(illustrating proactive control). An example of an ideal digital twin for single building indoor 
environment by Arowoiya et al. (2024) is shown in Figure 3 below. A key real-time application 
is predictive maintenance by analyzing equipment performance data, AI can predict failures or 
inefficiencies, prompting maintenance before energy waste occurs. This was also identified as 
a key role of digital twins in multiple reviews where a chiller’s power draw pattern might 
indicate refrigerant leakage, as an AI model can catch that anomaly and alert operators, 
preventing prolonged inefficiency (Agostinelli, 2024). 
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Figure	3.	Example of an ideal digital twin for single building indoor environment (Arowoiya 

et al., 2024) 
 
However, the literature also identifies significant challenges in achieving real-time capabilities. 
One challenge is data integration latency and ensuring that sensor data flows into the BIM/AI 
system rapidly and reliably enough for real-time decisions (Rane, 2023). Edge computing 
approaches, as used in the Rome case, are one solution to minimize cloud communication 
delays (Agostinelli et al., 2021). Another challenge is the sheer volume of data in large buildings 
where AI models must be efficient to run continuously (Farzaneh et al., 2021). Scalability is thus 
a concern given that current case studies are often limited to one building or a small campus, 
and it remains an open question how a city-wide deployment of building digital twins might be 
managed, as Sghiri et al. (2025) flagged scalability and data privacy as critical challenges 
hampering wider adoption). Despite these issues, there is an optimistic outlook that as IoT 
infrastructure improves and cloud platforms mature, AI-driven digital twins will become more 
commonplace. Researchers are actively working on frameworks (often employing open 
standards like BIM IFC, MQTT for data, etc.) to make integration easier (Agostinelli et al., 2021). 
Governments and industry are also increasingly interested in digital twins for smart cities, 
which will likely accelerate development in the building energy domain as well. Nonetheless, 
De Wilde (2023) questions how much of the digital twin concept is genuinely new versus a 
rebranding of existing building simulation and control techniques. Traditional building 
automation systems have long used feedback control and sensor data. the novelty in digital 
twins is arguably the tighter BIM integration and more advanced analytics (AI/ML). While most 
authors hype digital twins as transformative, de Wilde (2023) urges a critical view to ensure 
these systems deliver substantively better outcomes, not just new jargon. So far, early evidence 
from the field is promising in terms of energy savings and operational insights, but long-term 
studies will be needed to fully convince practitioners of their value. 



Frontiers	in	Science	and	Engineering	 Volume	5	Issue	6,	2025

ISSN:	2710‐0588	
	

36 

7. Data	Integration	and	Interoperability		

Another recurring research theme which is often underemphasized next to AI performance 
metrics, is the challenge of connecting BIM with energy simulation tools and operational data 
systems according to Banihashemi et al. (2022). Several studies have also discussed the 
interoperability issue where BIM models are rich but were not originally conceived for energy 
analysis, thus extracting the necessary data for simulation or linking with external databases 
can be non-trivial (Kahn et al., 2024). In the design phase context, one solution has been the 
development of automated workflows or middleware that convert BIM data to input formats of 
energy engines (gbXML, IDF, etc.). Research by Gao et al. (2019) reviewed such BIM-to-BEM 
integration and highlighted that mismatches (e.g. naming conventions, level of detail) often 
require manual fixes. Newer tools and standards (like the IFC schema for energy or APIs in tools 
like Revit’s Insight) are improving this, and studies like Meng et al. (2021) explicitly dealt with 
developing workflows to ensure data consistency between BIM and the energy model. In 
operational digital twins, the interoperability challenge extends to real-time data ingestion via 
linking building management systems (BMS) or IoT sensor networks with the BIM model. A 
common approach is to use the BIM model as a static reference (for geometry, system mappings) 
and create a separate data platform where time-series data is stored and analyzed, with 
pointers back to BIM elements, for example, using a unique ID to link a temperature sensor’s 
data to a specific room object in BIM (Agostinelli et al., 2021). Additionally, some frameworks 
use the MQTT protocol or other IoT standards to collect data, and then map it to BIM through 
middleware (Chamari et al., 2023). 
The findings suggest that open data standards are critical to success. Several authors 
recommend using IFC (Industry Foundation Classes) for sharing models between software (van 
Berlo et al., 2021) and Brick or Haystack schemas for sensor metadata (Fierro et al., 2020). In 
practice, many case studies still report custom integration e.g., Agostinelli et al. (2021) had to 
manually connect their BIM (in Revit/InfraWorks) with various analysis tools (MC4 Suite for 
energy, Autodesk CFD for airflow, etc.) due to a lack of a unified platform. This indicates a gap 
where tool vendors and standards bodies need to catch up. Interoperability extends also to 
combining various simulation domains as some projects integrate not just energy simulation 
but also CFD (for airflow distribution) or renewable energy system simulation, all linked via the 
BIM model (Shirowzhan et al., 2020). Thus, ensuring all these pieces talk to each other is non-
trivial and often a research contribution in itself in these papers. Moreover, one positive trend 
is the emergence of platforms and middleware aimed at easing integration. For instance, Dinis 
et al. (2022) used the BIMServer or ontology-based approaches to create a unified 
representation of building data that AI algorithms can consume. Recent works by Fernandes et 
al. (2024) created APIs that allow real-time queries to BIM models for properties needed in 
energy calculations, which can then be plugged into AI code. The consensus is that without 
addressing data interoperability, the most advanced AI models will not be practically 
deployable. Therefore, many of the papers reviewed explicitly mention their data handling 
strategy, and many call for “future development of unified BIM-Digital Twin frameworks” as a 
priority. This is clearly an area where academic research intersects with software development 
and standardization efforts. 

8. Model	Validation,	Accuracy	and	Explainability		

According to Khan et al.’s (2024) study, high accuracy metrics are reported for their AI 
predictions of energy performance with ANN models achieving <5% error on test data. When 
combined deep learning approaches predicting hourly loads with errors in the 5–10% range as 
reported by Sajjad et al. (2024)	al. (2017). Although these results are encouraging, researchers 
are careful to validate models on separate test sets or via cross-validation to ensure they 
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generalize. A few studies went further to validate AI predictions against real monitored data 
(when available). For example, Amasyali & El-Gohary (2018) compiled numerous data-driven 
prediction studies and found that while many ML models perform excellently on historical data, 
their performance can degrade if building usage changes or if applied to a different building. 
Thus, the concept of transferability emerges, questioning whether a model trained on one 
building or scenario be used on another. Most AI-BIM works train models per building or per 
design scenario, which limits direct transfer, but some propose transfer learning techniques to 
adapt models to new contexts, representing an area of ongoing research (Casapulla et al., 2025). 
Explainability of AI models is another point of focus as mentioned by Khan et al. (2024), using 
LIME to provide local interpretability of their gradient-boosted tree model. The result was a 
chart of feature importance for each prediction, which helped identify that HVAC system 
coefficient of performance and window glazing properties were among the most influential 
factors for energy consumption in their case study. Such insights are valuable as only a few 
studies discovered counter-intuitive influences (e.g. a certain design parameter had a nonlinear 
effect) which were then examined further through explainability tools (Kahn et al., 2024).  
The literature seems to agree that black-box models, while powerful, need to be demystified for 
end-users according to Sabeena (2025). This is especially true if an AI is to suggest operational 
changes in a building, where facility managers will want to know why the AI recommends, say, 
turning off a certain chiller for an hour. Techniques like rule extraction from trained models or 
hybrid physics-AI models (grey-box models) are being explored to inject more transparency. 
Another aspect of validation is uncertainty analysis. Only a few cutting-edge studies address 
this, but it’s worth noting: Khan et al. (2024) introduced uncertainties (weather variability, 
occupant behavior uncertainty) into their optimization and found that accounting for 
uncertainty could further improve robust energy savings (an additional 4% improvement 
beyond the deterministic optimum). This indicates that rigorous approaches are being 
developed to ensure AI recommendations are not just optimal for a fixed scenario, but resilient 
to variations, representing a crucial aspect for real-world reliability. Similarly, some digital twin 
studies used ensemble models or continuously recalibrating models to maintain accuracy over 
time (Karkaria et al., 2025). These advanced validation strategies are not yet standard, but they 
represent an evolving best practice. In sum, the field is moving from simply proving that “AI can 
match simulation” to ensuring “AI can be trusted and understood”. The consensus is that high 
accuracy is necessary but not sufficient as stakeholders need confidence in AI outputs. Through 
methods like explainability, uncertainty quantification and continuous validation, researchers 
are addressing this which represents an important development for eventual industry adoption. 

9. Energy	Performance	Outcomes	and	Improvements	

Ultimately, the goal of these AI-enhanced systems is to improve energy performance of 
buildings. The literature provides evidence of significant potential improvements, though often 
in simulated or controlled scenarios rather than measured post-occupancy savings (Peinturier 
& Wallom, 2025). A common claim is that by exploring more design options or by optimizing 
controls, energy consumption can be reduced on the order of 10–30% compared to standard 
practice. For instance, Khan et al. (2024) reported a 13.4% reduction in energy use (with 
simultaneous improvements in CO₂ emissions and thermal comfort) for a case building after 
their AI-driven optimization. Li et al. (2024) similarly showed double-digit percentage 
reductions in annual energy demand by selecting optimal design parameters via a BIM+AI 
approach. These are non-trivial savings, especially considering many developed countries are 
seeking on the order of 20-30% building sector improvements to meet climate targets by 2030. 
Case studies of operational optimization also report benefits as digital twin projects often 
highlight peak load reduction or better load balancing rather than just absolute energy kWh 
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savings (Li & Hong, 2025). Moreover, one case achieved a flattening of the daily load curve, 
reducing peak demand by ~15% which can lower utility costs and strain on the grid (Shirazi & 
Jadid, 2017), and another reported benefit is improved occupant comfort alongside energy 
efficiency as the Clausen et	al. (2021) digital twin framework managed to reduce HVAC energy 
by ~10% while keeping more stable indoor temperatures by predicting issues ahead of time. 
It’s also noteworthy that AI-enhanced simulations support net-zero energy building (NZEB) 
designs more holistically. Sajjad et al. (2024) addressed net-zero tall buildings and found that 
BIM-driven energy simulation (even without explicit AI in their case) strongly correlates with 
achieving net-zero goals when integrated early in design. Moreover, adding AI to that could 
further refine how those buildings are designed and operated to maintain net-zero balance. 
Early applications of AI for renewable energy integration within buildings (optimizing when to 
use stored solar energy vs. grid) have been demonstrated in digital twin research (Fan & Li, 
2023), emphasizing that beyond reducing consumption, AI can help intelligently manage 
production and storage to hit NZEB targets. However, many empirical studies reported savings 
are from simulations or limited pilots as real buildings might see performance gaps (Zhao et al., 
2022; Guo &Wei, 2016). For example, a design optimization might presume ideal occupancy 
patterns, whereby if actual behavior differs, the real savings might be lower (Zhao et al., 2022). 
However, since digital twins allow recalibration with actual data, they provide a mechanism to 
keep performance on track, which traditional design-stage simulation cannot do. Over multiple 
studies, a general finding is that AI-enhanced BIM systems help close the performance loop 
according to Elmousalami et al. (2025), whereby design intentions are more likely to be 
achieved in operation when continuous simulation and adjustment is in place. This continuous 
commissioning aspect could lead to sustained efficiency improvements in the long run, an 
insight strongly emphasized in digital twin literature (Sghiri et al., 2025).  
Figure 4 below (drawing on data from a 2025 review) shows the empirical outcomes from roles 
and applications of digital twins and their impacts in Sghiri et al.’s (2025) systematic literature 
review. Fifteen recent digital-twin case studies are summerised into a single comparative table, 
showing how real-time BIM-based simulation underpins energy management across HVAC, 
lighting, renewable microgrids and even specialist contexts such as animal housing. Each row 
traces a clear line from the application area and building type through the live data that feed 
the twin combining IoT streams, BIM geometry, weather inputs and other operational records 
to the AI method deployed, which ranges from deep-learning forecasters (CNN-LSTM, LSTM) 
and graph neural networks to optimisation heuristics such as genetic algorithms and NSGA-II, 
together with the software environments in which they run (Sghiri et al., 2025). It is revealed 
that twins drawing on multiple data sources are already delivering pre-emptive energy savings 
by predicting loads and adjusting systems in advance, while single-source twins still contribute 
but mainly through retrospective analysis, it also highlights the field’s methodological maturity, 
where advanced AI models are paired with optimisation routines to secure double-digit 
efficiency gains, align demand with on-site renewables and preserve occupant comfort. Overall, 
the evidence reinforces the review’s central message that digital twins are becoming holistic, 
context-aware energy managers rather than narrow tools for shaving baseline consumption 
(Sghiri et al., 2025). 
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Figure	4.	Empirical summary of digital twin applications for predictive modeling and 

simulation (Sghiri et al., 2025) 
 
In summary, the analytic synthesis of current research confirms that AI enhancements to BIM 
have demonstrated significant improvements in the speed and quality of energy performance 
simulation. They enable rapid design iteration, continuous operational tuning and integration 
of disparate data sources into a cohesive model of building performance. The academic 
consensus is positive about the potential where AI methods are largely seen as complementary 
to traditional simulation, not replacing physics but augmenting it to handle complexity and real-
time demands. Debates remain on how to best implement these systems (standardization, trust, 
etc.), but there is little doubt that this convergence of technologies is a key part of the future of 
sustainable building engineering. 
 



Frontiers	in	Science	and	Engineering	 Volume	5	Issue	6,	2025

ISSN:	2710‐0588	
	

40 

10. Conclusion	

This comprehensive review reveals that AI-enhanced BIM systems are reshaping how we 
model, simulate and manage building energy performance. A first key insight is the dramatic 
improvement in simulation agility by training machine learning models on data from BIM-
based simulations, researchers have achieved near-instantaneous energy predictions for 
design alternatives that would traditionally take hours of computation. This enables design 
teams to iterate more freely and explore innovative solutions (forms, materials, systems) with 
immediate feedback on energy implications. The second insight is the emergence of real-time 
building performance management through digital twins. Integrating BIM, sensor data and AI 
analytics yields a living model of the building that can continuously track and predict 
performance. Case studies demonstrate that such systems can detect anomalies, optimize 
control strategies and better integrate renewable energy, leading to more efficient and resilient 
building operations. Third, the synergy of BIM and AI also fosters a more integrated lifecycle 
approach to energy management: the same digital model can be used from early design (for 
simulation) through construction (for coordination) into operation (as a digital twin), creating 
a feedback loop where operational data informs future design improvements (a cornerstone of 
sustainable practice). Broad agreement on the energy and emissions benefits is also found to 
be attainable as AI-augmented optimization has yielded double-digit percentage reductions in 
energy use in various studies and improved alignment between predicted and actual building 
performance. Where a traditional approach might design an efficient building but see 
performance degrade due to unforeseen operational issues, an AI-driven twin can catch and 
correct those issues, keeping the building closer to its optimal performance. Additionally, the 
incorporation of explainable AI techniques is a noteworthy advancement, as it addresses the 
transparency gap where stakeholders can see which factors drive energy outcomes, making the 
technology’s recommendations more convincing and actionable. Finally, this review highlights 
that these technologies are globally relevant, researchers worldwide converge on similar 
themes, indicating a coherent direction in academic inquiry and a shared recognition of 
buildings’ pivotal role in climate mitigation. 

11. Significance	of	Study	

The findings are significant on multiple levels. Academically, they validate that combining data-
driven AI methods with physics-based building simulation leverages the strengths of both, 
physics models ensure realism and compliance with laws of energy, while AI provides speed 
and adaptability. This hybrid approach is a paradigm shift in building performance analysis, 
moving the field towards what one might call “intelligent simulation”, representing simulations 
that learn and improve over time. For the building industry and policymakers, the implications 
are equally significant. Buildings traditionally operate with static schedules and infrequent 
energy audits, but AI-enhanced BIM systems promise a future of continuous commissioning, 
where a building is constantly self-evaluating and tuning its performance. This could lead to 
substantial energy savings at scale if adopted broadly, as well as improved comfort and 
functionality of built environments (smart buildings that respond to occupants’ needs in real 
time). The ability to quickly evaluate design options also means sustainable design need not be 
a slow, expensive process; even resource-constrained projects could afford to optimize designs 
if AI tools make simulation essentially free (in terms of time). Moreover, the integration of 
renewables and smart grids with buildings can be facilitated by these systems, a building that 
can forecast its energy use and adjust can better match its consumption with solar generation 
or respond to grid signals, supporting broader clean energy systems. Thus, these findings have 
relevance not just for individual buildings but for urban energy infrastructure and climate 
strategies. The research also identifies ancillary benefits as AI can handle the complexity of 
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human behavior and other stochastic variables better than manual methods, so it offers a path 
to incorporate occupants into energy models more meaningfully (e.g. through occupancy 
prediction, adaptive comfort models). And by bringing together disciplines (IT, AI, building 
engineering), these efforts are pushing the AEC industry towards digital transformation – a 
necessary evolution for productivity and innovation in a traditionally conservative sector. In 
summary, the significance of this body of research is that it provides both the vision and some 
proof-of-concept examples of intelligent, responsive building systems that could substantially 
reduce energy waste and help meet global sustainability goals. 

12. Limitations	and	Implications	for	Future	Studies	

Despite encouraging results, present studies remain narrow in scope, often validating AI-BIM 
surrogates on a single building type or climate and piloting digital-twin control for only weeks 
or months, which leaves generalisability, model drift, sensor recalibration and the lifetime cost 
of keeping BIM and IoT data in sync largely untested. Datasets rarely include extreme weather 
or atypical occupancy, so prediction bias emerges when conditions deviate, and fully connected 
buildings raise cybersecurity and privacy risks that few authors examine, computational 
training loads and specialist software still deter small firms, while business models that justify 
large-scale retrofits are thinly documented, and proprietary industry deployments that could 
offer practical insight seldom appear in academic sources. Thus, future work must develop open 
ontologies that tie IFC-based BIM, building-energy models, live sensor streams and AI outputs 
into one seamless framework, pursue hybrid physics-AI engines that blend machine-learning 
insights with first-principles heat-transfer equations to boost robustness and explainability, 
and refine reinforcement-learning controllers that can adjust HVAC and renewables in real time 
without compromising safety or comfort. Researchers should extend optimisation studies from 
single buildings to campuses and city districts, integrate digital twins with grid and storage 
models for demand response, and design visual and augmented-reality interfaces that help 
facility managers trust and act on AI recommendations. Longitudinal case studies that run for 
several years across diverse building types, climates and cultural contexts will be essential to 
measure durability, maintenance effort, and true energy savings, thereby moving AI-enhanced 
BIM from promising demonstration to reliable, scalable infrastructure for low-carbon, resilient 
buildings and communities. 
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