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Abstract

Amid urgent climate goals, the building sector’s high energy use demands smarter
design and operation strategies. This paper critically explores recent peer-reviewed
literature on Al-enhanced Building Information Modeling (BIM) systems for real-time
energy performance simulation, highlighting how artificial intelligence (AI) techniques
are integrated with BIM to improve building energy efficiency, reviewing global studies
that combine BIM-based energy modeling with machine learning, optimization
algorithms and digital twin frameworks. Key findings indicate that Al can dramatically
accelerate energy simulations and enable real-time predictive analysis in both design
and operational phases. Surrogate models (neural networks and gradient-boosted trees)
trained on BIM-generated data achieve prediction accuracies above 90%, providing
instant feedback on design alternatives. In operation, Al-driven digital twins linking BIM
with IoT sensor data allow continuous monitoring and predictive control of building
systems. These approaches have led to significant energy savings (often >10%) and
support net-zero energy goals. However, challenges persist in data interoperability,
model generalization and industry adoption. This paper contributes an integrated
perspective on current methods, empirical outcomes and emerging themes (explainable
Al and uncertainty analysis), outlining future research directions to fully realize real-
time energy simulation in smart sustainable buildings.
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1. Introduction

Energy efficiency in buildings has become a paramount concern globally as buildings account
for roughly 36-40% of annual energy consumption and a significant share of carbon emissions
(Min etal, 2022). Improving building energy performance is crucial for meeting climate targets
such as the Paris Agreement. Building Information Modeling (BIM) is now an established tool
in the architecture, engineering and construction (AEC) industry, providing detailed digital
representations of a building’s geometry and systems throughout its lifecycle. According to Liu
et al.” (2019), BIM facilitates traditional building performance simulations (BPS) including
energy modeling, by supplying rich data on building envelope, materials and systems.
Conventionally, engineers use BIM exports in physics-based simulation engines (EnergyPlus)
to predict energy consumption, thermal comfort, daylight and key performance metrics
(Gourlis, 2023). However, these simulations can be computationally intensive and are typically
done in batch processes for static scenarios, rather than continuously in real time. In parallel,
the rise of artificial intelligence (AI) and data-driven methods offers new opportunities to
enhance BIM-based analysis. Al techniques particularly machine learning (ML) algorithms can
learn complex patterns from simulation data or real sensor data, providing fast predictive
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models (surrogates) of building performance (Cecoon & Villa, 2021). This convergence has
given birth to the concept of Al-enhanced BIM intelligent systems and platforms where BIM’s
structured building data is combined with Al algorithms to simulate and even optimize energy
performance more efficiently. A related development is the digital twin, a virtual replica of a
physical building that continuously receives data from IoT sensors and uses Al to mirror and
predict the building’s performance in real time (Sepasgozar et al.,, 2023). These innovations
promise to shift energy analysis from a one-off design exercise to a continuous, adaptive
process across the building lifecycle.

Moreover, traditional energy modeling workflows face limitations that Al integration aims to
overcome. First, exploring multiple design alternatives for energy efficiency is time-consuming;
each option must be individually modeled and simulated, leading to a narrow search of the
design space (Tsikas et al., 2025). This is problematic in early design when decisions have
profound impacts on future energy use. Second, conventional simulation tools often operate in
silos, not fully interoperable with BIM, causing manual data transfer and potential errors
(Panagoulia & Rakha, 2023). Third, building operations rarely adhere to design assumptions
where real occupancy patterns and weather deviations cause a performance gap between
predicted and actual energy use (Mahdavi et al.,, 2021). Static simulation models struggle to
adapt to these dynamic conditions, through introducing Al, researchers hope to automate and
accelerate simulations and to enable real-time performance assessment, thereby supporting
more informed decision-making. For example, a trained ML model can instantly predict annual
energy use for a given set of design parameters, allowing designers to get immediate feedback
on efficiency improvements as identified in Seyedzadeh et al’s (2018) literature review.
Similarly, an Al-driven digital twin can continuously forecast a building’s energy demand and
optimize control settings (like HVAC adjustments) in response to live data (Tsikas et al., 2025).
Thus, the rationale for this research is that combining BIM with Al has the potential to
significantly improve both the speed and intelligence of energy performance simulations, which
is critical for sustainable design and operations in an era of smart cities and climate urgency.

2. Current Situation of Study

Research interest in integrating Al with BIM for energy applications has surged in recent years.
De Wilde (2023) suggests that the fields of Al, machine learning and digital twins have rapidly
permeated the building simulation domain, which historically relied on physics-based models.
In fact, digital twin concepts only started appearing in building performance literature around
2017, but have grown exponentially since 2018 as figure 1 illustrates this trend where
academic publications on digital twins for building energy have increased dramatically,
especially in leading countries like China as increasing studies now explore Al applications at
different stages of the building lifecycle. In early-design phases, researchers have developed
frameworks to link BIM with automated energy simulations and optimization. Khan et al. (2024)
propose a system that generates a dataset via BIM-driven simulation, trains an ML model to
predict energy outcomes, and then runs multi-objective genetic algorithms for design
optimization. Such approaches have achieved high prediction accuracy (R*2 > 0.93) and
identified design improvements yielding ~13% energy savings in case studies. Other works use
surrogate models to evaluate numerous design variants rapidly, as Tsikas et al. (2025) trained
regression, decision tree, random forest and neural network models on BIM-generated data for
337 residential building cases, finding that an ANN could best predict energy use instantly with
minimal error.
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Figure 1. Trends in publications on digital twin, building and energy over the years (Sghiri et
al,, 2025)

Additionally, there is growing interest in applying Al during building operation through digital
twins. Pioneering projects (Agostinelli et al. 2021 in Italy) have created district-scale digital
twins where BIM is integrated with real-time sensor data and Al analytics to manage energy
systems in real neighborhoods. These efforts showed that Al algorithms can optimize energy
flows while maintaining comfort by evaluating renewable energy and storage scenarios to
move a community closer to net-zero energy consumption. Despite this progress, the adoption
gap in practice remains notable. Literature reviews highlight that while dozens of conceptual
frameworks and pilot studies exist, few have been fully implemented at scale in industry
settings according to Sghiri et al. (2025). The integration of BIM, building energy modeling
(BEM) tools, 10T platforms and Al is also highly complex, often requiring bespoke solutions.
There is also skepticism regarding reliability where facility managers may be wary of trusting
“black-box” Al predictions for critical decisions like HVAC control without clear explanations or
proven robustness, hence emerging research into explainable Al in this domain (Kahn et al,,
2024). Additionally, data availability and quality can be limiting factors where Al models need
rich training data, which in design can be synthetically generated via simulations, but in
operation relies on extensive sensor deployments. These gaps indicate that further research
and development are needed to translate Al-enhanced BIM from promising concept to common
practice.

3. Research Gap, Aims, Objectives and Contributions

While current research demonstrates the feasibility and benefits of Al-integrated BIM systems,
significant gaps remain in knowledge and practice. One gap is a lack of unified frameworks and
standards for interoperability: many studies use custom workflows to connect BIM models with
energy simulation engines and Al toolkits, which may not generalize easily (Agostinelli et al.,
2021). For example, transferring a BIM model into a simulation requires handling geometry
and material data (often via formats like gbXML or IFC), and mismatches in data schemas can
impede automation (Kahn et al., 2024). Another gap lies in real-time performance where true
real-time energy simulation would entail continuously updating models with live data and
instantly computing control actions, yet most case studies are still in quasi-real-time (running
predictions on intervals of minutes or hours) and often focus on either the design stage or
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operational stage, but not both. Thus, bridging this design-operation divide is an open challenge.
Moreover, there is a research gap in validating Al-driven predictions against long-term actual
building performance, as few studies report on multi-year deployments of digital twins or how
Al models degrade or adapt over time in a changing building context. This gap in longitudinal
evidence makes it harder to quantify the reliability and ROI of such systems. Finally, much of
the literature has been technology-driven, with less focus on human and organizational factors,
for instance, how to effectively present Al simulation results to architects or facility managers
(usability) and how to upskill practitioners to trust and leverage these advanced tools. Overall,
the current body of research lacks a comprehensive understanding of how to standardize, scale
and sustain Al-enhanced BIM energy simulation in real-world projects, which this report
addresses by synthesizing findings and pointing out these critical needs.

The aim of this report is to provide a comprehensive academic synthesis of Al-enhanced BIM
systems for real-time energy performance simulation. These objectives are designed to aid the
achievement of the proposed research aim. 1) To review the methods researchers have used to
integrate Al (machine learning, optimization algorithms) with BIM and energy modeling,
covering both design-phase and operation-phase applications. 2) To analyze empirical results
from case studies and experiments worldwide, demonstrating the effectiveness of Al-enhanced
BIM (such as accuracy gains, time savings, or energy reductions achieved). 3) To identify
common themes, benefits and challenges found across the literature like faster simulations and
debates such as the trade-off between model accuracy and interpretability. 4) To formulate
future research directions and recommendations that can guide academic inquiry and practical
development toward more effective real-time energy simulation in smart building systems. By
fulfilling these objectives, this paper contributes to academic knowledge by consolidating
scattered findings from the rapidly evolving intersection of BIM, Al and building energy
simulation. While prior reviews have examined related areas in data-driven building energy
prediction and BIM-based performance modeling (Tsikas et al., 2025), this synthesis uniquely
focuses on the convergence of Al with BIM for real-time simulation, reflecting the state-of-the-
art up to 2025. Practically, the insights presented can inform stakeholders including architects,
engineers, energy modelers and facility managers about the potential of Al-enhanced BIM
workflows and what benefits can be expected. By also discussing challenges, this report guides
technology developers and policymakers on where to focus efforts, thereby supporting both
the academic discourse and the AEC industry’s advancement toward smarter, energy-efficient
buildings.

4. Findings and Discussion

Bringing together the findings from the literature, several key themes in Al-enhanced BIM
systems for real-time energy simulation are identified including (1) Accelerated simulation and
design optimization via Al surrogates, (2) Digital twin implementations for real-time
monitoring and control, (3) Data integration and interoperability challenges, (4) Model
accuracy, validation and explainability, and (5) Energy performance outcomes and
improvements achieved. The following sections will discuss each, highlighting consensus,
debates, and representative studies and include empirical figures to illustrate these concepts.

5. Accelerating Simulation and Optimizing Design with Al Surrogates

One of the clearest benefits reported is the drastic acceleration of performance evaluation
during building design by using Al as a surrogate for physics-based simulations. In conventional
design processes, evaluating the energy impact of different design choices (orientation, form,
materials, HVAC systems) requires separate simulation runs for each variant, which is labor-
intensive (Di Santo et al,, 2023). Al models can learn from a set of simulated cases and then
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predict outcomes for new design inputs almost instantly. This enables what-if analysis and
optimization to be done in minutes rather than days. Numerous studies validate this approach,
as Tahmasebinia et al. (2022) integrated BIM tools with regression modeling to evaluate green
building designs; their approach identified certain building shapes (notably triangular forms)
as particularly energy-efficient, in line with simulation results. Tsikas et al. (2025) directly
compared multiple ML algorithms as surrogates and found ANN models provided the best
fidelity, with error distributions tightly clustered around zero, outperforming simpler methods
like linear regression. Figure 2 shows the error distribution of such models from their study,
The curves represent error frequency (density) for four models: Statistical Regression (grey),
Decision Tree (orange), Random Forest (green) and Artificial Neural Network (blue). The ANN
shows errors tightly centered around 0, indicating high accuracy in reproducing detailed
simulation results. In contrast, simpler models like regression have broader distributions (e.g.
+1 MWh error range), emphasizing the superior predictive performance of advanced Al
techniques. The ANN'’s error curve is sharply peaked at zero, indicating very minor deviation
from the ground-truth simulation results, whereas other models (basic statistical regression)
show broader error spread (under- or over-predicting in some cases). This high accuracy
means designers can trust the surrogate model to evaluate design tweaks in real time.
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Figure 2. Prediction error distributions for various surrogate models trained to estimate
building energy performance from BIM data (Tsikas et al. 2025).

Similarly, Khan et al. (2024) reported R? values above 0.93 for an optimized LightGBM model
predicting energy use, leveraged this in an optimization loop to improve a building’s design.
The ability to incorporate multi-objective optimization is another advantage, as Al surrogates
compute results so fast that algorithms can iterate thousands of design options to find Pareto-
optimal solutions balancing energy, cost and. Other studies echo these successes including Li et
al. (2024) used an orthogonal testing method with BIM and found optimal combinations of
envelope parameters that reduced annual energy by significant margins (over 20% in some
scenarios). In all, there is strong agreement that Al-enhanced BIM tools markedly speed up the
exploration of design alternatives, allowing more thorough optimization for energy efficiency
at early stages when changes are easier and cheaper to make. Alongside these benefits, a point
of discussion is model generalizability. While an Al model can accurately predict within the
range of designs it was trained on, several authors caution that predictions may be unreliable
if a new design falls outside the training data distribution (Tsikas et al., 2025). This raises the
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importance of building robust and diverse training datasets (covering various building types,
climates) or using adaptive learning.

Some debate also exists on the choice of algorithms, for instance, an ANN might give best raw
accuracy but can be a “black box,” whereas a decision tree or simpler regression might be more
interpretable for designers (Hassija et al., 2024). Recent work strives to get the best of both
worlds by employing explainable Al (XAI) techniques, as Khan et al. (2024) incorporated the
LIME explanation tool with their ML model to identify which input features (design variables
like HVAC efficiency, window-to-wall ratio, insulation levels) were most influential on
predicted outcomes. This is valuable as it provides human designers insight into why the model
suggests certain design improvements, thus building trust in the Al recommendations. In
summary, recent empirical literature concurs that Al surrogates are a game-changer for early
design analysis, as ongoing research is focusing on enhancing their reliability (through broader
training and uncertainty analysis) and interpretability (through XAI), which will be crucial for
industry uptake.

6. Real-time Monitoring and Control Via Digital Twins

The second major theme is the use of Al within BIM-based digital twins for operational energy
management. Traditional BPS is largely an offline, design-stage activity. Digital twins extend
BIM into the operational phase by linking it with live data streams, essentially turning the static
BIM model into a dynamic simulation that runs in parallel with the real building (Wang et al.,
2022). The findings across studies consistently show that digital twins enable real-time or near-
real-time monitoring, anomaly detection and even predictive control of building systems. For
example, a digital twin can continuously simulate expected energy performance under current
conditions (weather, occupancy) and flag deviations if the actual consumption drifts, indicating
a fault or inefficiency (Clausen et al. 2021 demonstrated this for public buildings, using a twin
to improve energy efficiency and occupant comfort by detecting irregular HVAC behavior). Al
is the “brain” in these systems: machine learning models process the incoming sensor data to
make predictions (e.g. tomorrow’s cooling load by Abbasabadi & Ashayeri, 2024) or decisions
(e.g. adjust setpoints to shave peaks). A clear consensus is that real-time analytics are essential
because building performance is highly dynamic, static schedules or models result in either
wasted energy or comfort issues when conditions change unexpectedly (Boje et al., 2023).

Studies in different regions report positive outcomes from Al-driven real-time control. In the
Rome digital district case (Agostinelli et al. 2021), the Al-enhanced twin allowed evaluating
various energy management scenarios (like increasing solar PV capacity versus adding battery
storage) and provided an optimized strategy that raised the self-consumption of renewable
energy and met near-zero energy targets for the community. Another example by Péan et al.
(2022, as reported by Arowoiya et al. 2024) involved a digital twin for a university building
which, through reinforcement learning (a form of Al), learned to pre-cool or pre-heat the
building in anticipation of occupancy, cutting down peak grid load without sacrificing comfort
(illustrating proactive control). An example of an ideal digital twin for single building indoor
environment by Arowoiya et al. (2024) is shown in Figure 3 below. A key real-time application
is predictive maintenance by analyzing equipment performance data, Al can predict failures or
inefficiencies, prompting maintenance before energy waste occurs. This was also identified as
a key role of digital twins in multiple reviews where a chiller's power draw pattern might
indicate refrigerant leakage, as an Al model can catch that anomaly and alert operators,
preventing prolonged inefficiency (Agostinelli, 2024).
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Figure 3. Example of an ideal digital twin for single building indoor environment (Arowoiya
etal., 2024)

However, the literature also identifies significant challenges in achieving real-time capabilities.
One challenge is data integration latency and ensuring that sensor data flows into the BIM /Al
system rapidly and reliably enough for real-time decisions (Rane, 2023). Edge computing
approaches, as used in the Rome case, are one solution to minimize cloud communication
delays (Agostinelli et al.,, 2021). Another challenge is the sheer volume of data in large buildings
where Al models must be efficient to run continuously (Farzaneh et al., 2021). Scalability is thus
a concern given that current case studies are often limited to one building or a small campus,
and it remains an open question how a city-wide deployment of building digital twins might be
managed, as Sghiri et al. (2025) flagged scalability and data privacy as critical challenges
hampering wider adoption). Despite these issues, there is an optimistic outlook that as IoT
infrastructure improves and cloud platforms mature, Al-driven digital twins will become more
commonplace. Researchers are actively working on frameworks (often employing open
standards like BIM IFC, MQTT for data, etc.) to make integration easier (Agostinelli et al., 2021).
Governments and industry are also increasingly interested in digital twins for smart cities,
which will likely accelerate development in the building energy domain as well. Nonetheless,
De Wilde (2023) questions how much of the digital twin concept is genuinely new versus a
rebranding of existing building simulation and control techniques. Traditional building
automation systems have long used feedback control and sensor data. the novelty in digital
twins is arguably the tighter BIM integration and more advanced analytics (Al/ML). While most
authors hype digital twins as transformative, de Wilde (2023) urges a critical view to ensure
these systems deliver substantively better outcomes, not just new jargon. So far, early evidence
from the field is promising in terms of energy savings and operational insights, but long-term
studies will be needed to fully convince practitioners of their value.
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7. Data Integration and Interoperability

Another recurring research theme which is often underemphasized next to Al performance
metrics, is the challenge of connecting BIM with energy simulation tools and operational data
systems according to Banihashemi et al. (2022). Several studies have also discussed the
interoperability issue where BIM models are rich but were not originally conceived for energy
analysis, thus extracting the necessary data for simulation or linking with external databases
can be non-trivial (Kahn et al,, 2024). In the design phase context, one solution has been the
development of automated workflows or middleware that convert BIM data to input formats of
energy engines (gbXML, IDF, etc.). Research by Gao et al. (2019) reviewed such BIM-to-BEM
integration and highlighted that mismatches (e.g. naming conventions, level of detail) often
require manual fixes. Newer tools and standards (like the IFC schema for energy or APIs in tools
like Revit’s Insight) are improving this, and studies like Meng et al. (2021) explicitly dealt with
developing workflows to ensure data consistency between BIM and the energy model. In
operational digital twins, the interoperability challenge extends to real-time data ingestion via
linking building management systems (BMS) or IoT sensor networks with the BIM model. A
common approach is to use the BIM model as a static reference (for geometry, system mappings)
and create a separate data platform where time-series data is stored and analyzed, with
pointers back to BIM elements, for example, using a unique ID to link a temperature sensor’s
data to a specific room object in BIM (Agostinelli et al., 2021). Additionally, some frameworks
use the MQTT protocol or other 10T standards to collect data, and then map it to BIM through
middleware (Chamari et al., 2023).

The findings suggest that open data standards are critical to success. Several authors
recommend using IFC (Industry Foundation Classes) for sharing models between software (van
Berlo et al., 2021) and Brick or Haystack schemas for sensor metadata (Fierro et al., 2020). In
practice, many case studies still report custom integration e.g., Agostinelli et al. (2021) had to
manually connect their BIM (in Revit/InfraWorks) with various analysis tools (MC4 Suite for
energy, Autodesk CFD for airflow, etc.) due to a lack of a unified platform. This indicates a gap
where tool vendors and standards bodies need to catch up. Interoperability extends also to
combining various simulation domains as some projects integrate not just energy simulation
but also CFD (for airflow distribution) or renewable energy system simulation, all linked via the
BIM model (Shirowzhan et al., 2020). Thus, ensuring all these pieces talk to each other is non-
trivial and often a research contribution in itself in these papers. Moreover, one positive trend
is the emergence of platforms and middleware aimed at easing integration. For instance, Dinis
et al. (2022) used the BIMServer or ontology-based approaches to create a unified
representation of building data that Al algorithms can consume. Recent works by Fernandes et
al. (2024) created APIs that allow real-time queries to BIM models for properties needed in
energy calculations, which can then be plugged into Al code. The consensus is that without
addressing data interoperability, the most advanced AI models will not be practically
deployable. Therefore, many of the papers reviewed explicitly mention their data handling
strategy, and many call for “future development of unified BIM-Digital Twin frameworks” as a
priority. This is clearly an area where academic research intersects with software development
and standardization efforts.

8. Model Validation, Accuracy and Explainability

According to Khan et al’s (2024) study, high accuracy metrics are reported for their Al
predictions of energy performance with ANN models achieving <5% error on test data. When
combined deep learning approaches predicting hourly loads with errors in the 5-10% range as
reported by Sajjad et al. (2024) al. (2017). Although these results are encouraging, researchers
are careful to validate models on separate test sets or via cross-validation to ensure they
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generalize. A few studies went further to validate Al predictions against real monitored data
(when available). For example, Amasyali & El-Gohary (2018) compiled numerous data-driven
prediction studies and found that while many ML models perform excellently on historical data,
their performance can degrade if building usage changes or if applied to a different building.
Thus, the concept of transferability emerges, questioning whether a model trained on one
building or scenario be used on another. Most AI-BIM works train models per building or per
design scenario, which limits direct transfer, but some propose transfer learning techniques to
adapt models to new contexts, representing an area of ongoing research (Casapulla etal., 2025).
Explainability of Al models is another point of focus as mentioned by Khan et al. (2024), using
LIME to provide local interpretability of their gradient-boosted tree model. The result was a
chart of feature importance for each prediction, which helped identify that HVAC system
coefficient of performance and window glazing properties were among the most influential
factors for energy consumption in their case study. Such insights are valuable as only a few
studies discovered counter-intuitive influences (e.g. a certain design parameter had a nonlinear
effect) which were then examined further through explainability tools (Kahn et al., 2024).

The literature seems to agree that black-box models, while powerful, need to be demystified for
end-users according to Sabeena (2025). This is especially true if an Al is to suggest operational
changes in a building, where facility managers will want to know why the Al recommends, say,
turning off a certain chiller for an hour. Techniques like rule extraction from trained models or
hybrid physics-Al models (grey-box models) are being explored to inject more transparency.
Another aspect of validation is uncertainty analysis. Only a few cutting-edge studies address
this, but it’'s worth noting: Khan et al. (2024) introduced uncertainties (weather variability,
occupant behavior uncertainty) into their optimization and found that accounting for
uncertainty could further improve robust energy savings (an additional 4% improvement
beyond the deterministic optimum). This indicates that rigorous approaches are being
developed to ensure Al recommendations are not just optimal for a fixed scenario, but resilient
to variations, representing a crucial aspect for real-world reliability. Similarly, some digital twin
studies used ensemble models or continuously recalibrating models to maintain accuracy over
time (Karkaria et al., 2025). These advanced validation strategies are not yet standard, but they
represent an evolving best practice. In sum, the field is moving from simply proving that “Al can
match simulation” to ensuring “Al can be trusted and understood”. The consensus is that high
accuracy is necessary but not sufficient as stakeholders need confidence in Al outputs. Through
methods like explainability, uncertainty quantification and continuous validation, researchers
are addressing this which represents an important development for eventual industry adoption.

9. Energy Performance Outcomes and Improvements

Ultimately, the goal of these Al-enhanced systems is to improve energy performance of
buildings. The literature provides evidence of significant potential improvements, though often
in simulated or controlled scenarios rather than measured post-occupancy savings (Peinturier
& Wallom, 2025). A common claim is that by exploring more design options or by optimizing
controls, energy consumption can be reduced on the order of 10-30% compared to standard
practice. For instance, Khan et al. (2024) reported a 13.4% reduction in energy use (with
simultaneous improvements in CO, emissions and thermal comfort) for a case building after
their Al-driven optimization. Li et al. (2024) similarly showed double-digit percentage
reductions in annual energy demand by selecting optimal design parameters via a BIM+AI
approach. These are non-trivial savings, especially considering many developed countries are
seeking on the order of 20-30% building sector improvements to meet climate targets by 2030.
Case studies of operational optimization also report benefits as digital twin projects often
highlight peak load reduction or better load balancing rather than just absolute energy kWh
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savings (Li & Hong, 2025). Moreover, one case achieved a flattening of the daily load curve,
reducing peak demand by ~15% which can lower utility costs and strain on the grid (Shirazi &
Jadid, 2017), and another reported benefit is improved occupant comfort alongside energy
efficiency as the Clausen et al. (2021) digital twin framework managed to reduce HVAC energy
by ~10% while keeping more stable indoor temperatures by predicting issues ahead of time.

It’s also noteworthy that Al-enhanced simulations support net-zero energy building (NZEB)
designs more holistically. Sajjad et al. (2024) addressed net-zero tall buildings and found that
BIM-driven energy simulation (even without explicit Al in their case) strongly correlates with
achieving net-zero goals when integrated early in design. Moreover, adding Al to that could
further refine how those buildings are designed and operated to maintain net-zero balance.
Early applications of Al for renewable energy integration within buildings (optimizing when to
use stored solar energy vs. grid) have been demonstrated in digital twin research (Fan & Li,
2023), emphasizing that beyond reducing consumption, Al can help intelligently manage
production and storage to hit NZEB targets. However, many empirical studies reported savings
are from simulations or limited pilots as real buildings might see performance gaps (Zhao et al,,
2022; Guo &Wei, 2016). For example, a design optimization might presume ideal occupancy
patterns, whereby if actual behavior differs, the real savings might be lower (Zhao etal., 2022).
However, since digital twins allow recalibration with actual data, they provide a mechanism to
keep performance on track, which traditional design-stage simulation cannot do. Over multiple
studies, a general finding is that Al-enhanced BIM systems help close the performance loop
according to Elmousalami et al. (2025), whereby design intentions are more likely to be
achieved in operation when continuous simulation and adjustment is in place. This continuous
commissioning aspect could lead to sustained efficiency improvements in the long run, an
insight strongly emphasized in digital twin literature (Sghiri et al., 2025).

Figure 4 below (drawing on data from a 2025 review) shows the empirical outcomes from roles
and applications of digital twins and their impacts in Sghiri et al.’s (2025) systematic literature
review. Fifteen recent digital-twin case studies are summerised into a single comparative table,
showing how real-time BIM-based simulation underpins energy management across HVAC,
lighting, renewable microgrids and even specialist contexts such as animal housing. Each row
traces a clear line from the application area and building type through the live data that feed
the twin combining [oT streams, BIM geometry, weather inputs and other operational records
to the Al method deployed, which ranges from deep-learning forecasters (CNN-LSTM, LSTM)
and graph neural networks to optimisation heuristics such as genetic algorithms and NSGA-II,
together with the software environments in which they run (Sghiri et al.,, 2025). It is revealed
that twins drawing on multiple data sources are already delivering pre-emptive energy savings
by predicting loads and adjusting systems in advance, while single-source twins still contribute
but mainly through retrospective analysis, it also highlights the field’s methodological maturity,
where advanced Al models are paired with optimisation routines to secure double-digit
efficiency gains, align demand with on-site renewables and preserve occupant comfort. Overall,
the evidence reinforces the review’s central message that digital twins are becoming holistic,
context-aware energy managers rather than narrow tools for shaving baseline consumption
(Sghiri et al., 2025).
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Figure 4. Empirical summary of digital twin applications for predictive modeling and

simulation (Sghiri et al., 2025)

In summary, the analytic synthesis of current research confirms that Al enhancements to BIM
have demonstrated significant improvements in the speed and quality of energy performance
simulation. They enable rapid design iteration, continuous operational tuning and integration
of disparate data sources into a cohesive model of building performance. The academic
consensus is positive about the potential where Al methods are largely seen as complementary
to traditional simulation, not replacing physics but augmenting it to handle complexity and real-
time demands. Debates remain on how to best implement these systems (standardization, trust,
etc.), but there is little doubt that this convergence of technologies is a key part of the future of

sustainable building engineering.
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10.Conclusion

This comprehensive review reveals that Al-enhanced BIM systems are reshaping how we
model, simulate and manage building energy performance. A first key insight is the dramatic
improvement in simulation agility by training machine learning models on data from BIM-
based simulations, researchers have achieved near-instantaneous energy predictions for
design alternatives that would traditionally take hours of computation. This enables design
teams to iterate more freely and explore innovative solutions (forms, materials, systems) with
immediate feedback on energy implications. The second insight is the emergence of real-time
building performance management through digital twins. Integrating BIM, sensor data and Al
analytics yields a living model of the building that can continuously track and predict
performance. Case studies demonstrate that such systems can detect anomalies, optimize
control strategies and better integrate renewable energy, leading to more efficient and resilient
building operations. Third, the synergy of BIM and Al also fosters a more integrated lifecycle
approach to energy management: the same digital model can be used from early design (for
simulation) through construction (for coordination) into operation (as a digital twin), creating
a feedback loop where operational data informs future design improvements (a cornerstone of
sustainable practice). Broad agreement on the energy and emissions benefits is also found to
be attainable as Al-augmented optimization has yielded double-digit percentage reductions in
energy use in various studies and improved alignment between predicted and actual building
performance. Where a traditional approach might design an efficient building but see
performance degrade due to unforeseen operational issues, an Al-driven twin can catch and
correct those issues, keeping the building closer to its optimal performance. Additionally, the
incorporation of explainable Al techniques is a noteworthy advancement, as it addresses the
transparency gap where stakeholders can see which factors drive energy outcomes, making the
technology’s recommendations more convincing and actionable. Finally, this review highlights
that these technologies are globally relevant, researchers worldwide converge on similar
themes, indicating a coherent direction in academic inquiry and a shared recognition of
buildings’ pivotal role in climate mitigation.

11.Significance of Study

The findings are significant on multiple levels. Academically, they validate that combining data-
driven Al methods with physics-based building simulation leverages the strengths of both,
physics models ensure realism and compliance with laws of energy, while Al provides speed
and adaptability. This hybrid approach is a paradigm shift in building performance analysis,
moving the field towards what one might call “intelligent simulation”, representing simulations
that learn and improve over time. For the building industry and policymakers, the implications
are equally significant. Buildings traditionally operate with static schedules and infrequent
energy audits, but Al-enhanced BIM systems promise a future of continuous commissioning,
where a building is constantly self-evaluating and tuning its performance. This could lead to
substantial energy savings at scale if adopted broadly, as well as improved comfort and
functionality of built environments (smart buildings that respond to occupants’ needs in real
time). The ability to quickly evaluate design options also means sustainable design need not be
a slow, expensive process; even resource-constrained projects could afford to optimize designs
if Al tools make simulation essentially free (in terms of time). Moreover, the integration of
renewables and smart grids with buildings can be facilitated by these systems, a building that
can forecast its energy use and adjust can better match its consumption with solar generation
or respond to grid signals, supporting broader clean energy systems. Thus, these findings have
relevance not just for individual buildings but for urban energy infrastructure and climate
strategies. The research also identifies ancillary benefits as Al can handle the complexity of
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human behavior and other stochastic variables better than manual methods, so it offers a path
to incorporate occupants into energy models more meaningfully (e.g. through occupancy
prediction, adaptive comfort models). And by bringing together disciplines (IT, Al, building
engineering), these efforts are pushing the AEC industry towards digital transformation - a
necessary evolution for productivity and innovation in a traditionally conservative sector. In
summary, the significance of this body of research is that it provides both the vision and some
proof-of-concept examples of intelligent, responsive building systems that could substantially
reduce energy waste and help meet global sustainability goals.

12.Limitations and Implications for Future Studies

Despite encouraging results, present studies remain narrow in scope, often validating Al-BIM
surrogates on a single building type or climate and piloting digital-twin control for only weeks
or months, which leaves generalisability, model drift, sensor recalibration and the lifetime cost
of keeping BIM and IoT data in sync largely untested. Datasets rarely include extreme weather
or atypical occupancy, so prediction bias emerges when conditions deviate, and fully connected
buildings raise cybersecurity and privacy risks that few authors examine, computational
training loads and specialist software still deter small firms, while business models that justify
large-scale retrofits are thinly documented, and proprietary industry deployments that could
offer practical insight seldom appear in academic sources. Thus, future work must develop open
ontologies that tie IFC-based BIM, building-energy models, live sensor streams and Al outputs
into one seamless framework, pursue hybrid physics-Al engines that blend machine-learning
insights with first-principles heat-transfer equations to boost robustness and explainability,
and refine reinforcement-learning controllers that can adjust HVAC and renewables in real time
without compromising safety or comfort. Researchers should extend optimisation studies from
single buildings to campuses and city districts, integrate digital twins with grid and storage
models for demand response, and design visual and augmented-reality interfaces that help
facility managers trust and act on Al recommendations. Longitudinal case studies that run for
several years across diverse building types, climates and cultural contexts will be essential to
measure durability, maintenance effort, and true energy savings, thereby moving Al-enhanced
BIM from promising demonstration to reliable, scalable infrastructure for low-carbon, resilient
buildings and communities.
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