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Abstract 
Rolling bearings, as core transmission components in rotating machinery, directly 
determine the reliability of equipment operation and the safety of industrial production. 
They play an irreplaceable role in key sectors such as aerospace, rail transportation, 
petrochemical industries, and intelligent manufacturing. In complex working conditions, 
bearing vibration signals exhibit strong non-stationarity and significant nonlinearity. 
Traditional fault diagnosis methods face challenges such as a high dependency on 
manual feature extraction, poor robustness under complex conditions, and insufficient 
ability to recognize multiple faults simultaneously. Deep learning techniques, with their 
advantages of end-to-end automatic feature learning and complex pattern recognition, 
have become the core research direction in the field of rolling bearing fault diagnosis. 
This paper systematically reviews recent research on rolling bearing fault diagnosis 
based on Convolutional Neural Networks (CNN) and their fusion models. It focuses on 
analyzing the technical principles, model architecture design, and performance 
optimization mechanisms of typical methods such as COA-CNN, FFT-CNN-Transformer, 
MSCNN-GRU, and 2D-CNN-GRU. The paper also compares the feature enhancement 
effects of preprocessing techniques such as Discrete Continuous Wavelet Transform 
(DCWT), Fast Fourier Transform (FFT), and Variational Mode Decomposition (VMD). 
Additionally, it explores optimization strategies for diagnostic robustness under noise 
interference, varying operating conditions, and small sample scenarios. Engineering 
application cases, such as coal chemical circulation fans and CNC machine tool spindle 
boxes, are used to verify the practical effectiveness of these methods. Finally, the paper 
looks ahead to future developments in areas such as small sample learning, dynamic 
condition adaptation, model lightweighting, and multi-modal fusion, providing 
theoretical references and technical support for the development and industrial 
application of intelligent diagnostic systems for rolling bearings. 
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1. Introduction 

As key supporting components of rotating machinery, rolling bearings are responsible for the 
positioning of rotating bodies and power transmission, and their health status directly affects 
the overall operational stability and service life of equipment. According to industrial fault 
statistics, over 40% of rotating machinery failures are caused by rolling bearing failures. 
Moreover, the characteristic signals in the early stages of failure are weak and can be easily 
obscured by high-speed operation, variable load impacts, and equipment background noise. If 
not diagnosed and warned in time, this may lead to equipment downtime, production 
interruptions, or even major safety accidents, causing huge economic losses. Traditional rolling 
bearing fault diagnosis methods are based on the core framework of "signal processing - feature 
extraction - pattern recognition," extracting fault features through time-domain analysis (mean, 
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root mean square, kurtosis, and other statistics), frequency-domain analysis (Fourier 
transform), or time-frequency analysis (wavelet transform, empirical mode decomposition 
(EMD))[1], and then using shallow machine learning models such as support vector machines 
(SVM) or BP neural networks for fault classification. However, these methods have significant 
limitations: first, the feature extraction process heavily relies on expert knowledge, has poor 
adaptability to non-stationary and nonlinear vibration signals, and struggles to capture 
transient fault features; second, in environments with strong noise interference or compound 
faults, manually designed features are easily contaminated by noise, leading to a significant 
decline in diagnostic accuracy; third, shallow models have limited capability to handle large-
scale, multimodal industrial monitoring data, and their generalization performance may not 
meet the demands of complex operating conditions. With the rapid development of artificial 
intelligence, deep learning, thanks to its adaptive feature learning capability in deep network 
structures, breaks the stepwise limitations of traditional diagnostic methods and realizes a 
direct mapping from raw vibration signals to fault types, providing a new approach to 
diagnosing rolling bearing failures in complex operating conditions. Convolutional neural 
networks (CNNs), due to their strong local feature extraction ability and efficient parameter 
sharing mechanisms, have become the mainstream model for rolling bearing fault diagnosis, 
giving rise to optimized single-modal structures such as multi-scale CNNs and dilated 
convolution CNNs, as well as multi-modal fusion architectures like CNN-GRU and CNN-
Transformer. At the same time, the introduction of intelligent optimization algorithms (such as 
the Coati Optimization Algorithm (COA) and Harris Hawk Optimization (HHO)) and advanced 
signal preprocessing techniques further enhances the model's adaptability to complex 
operating conditions. Based on six representative research papers, this article systematically 
reviews the research progress of deep learning in rolling bearing fault diagnosis from four 
dimensions: technical principles, model design, experimental validation, and engineering 
applications, analyzing the core advantages and applicable scenarios of various methods, and 
providing comprehensive references for technological innovation and engineering practice in 
this field. 

2. Core Technologies for Rolling Bearing Fault Diagnosis 

2.1. Fault Signal Characteristics and Diagnostic Challenges 
Common types of rolling bearing faults include inner ring faults, outer ring faults, rolling 
element faults, and multi-component compound faults. The vibration signal characteristics are 
significantly related to the fault mechanisms: under normal operating conditions, bearing 
vibration intensity is low (typically <0.2 mm/s), with frequency components concentrated in 
the low-frequency range (0~1000 Hz); inner ring faults, caused by periodic impacts between 
rolling elements and the inner raceway, result in a significant increase in vibration intensity 
(can exceed 0.7 mm/s), with frequency distribution showing a dual-band concentration at 
0~1000 Hz and 1500~2000 Hz; outer ring fault vibration signals are prominent in the low-
frequency range and exhibit characteristic differences depending on the damage location (e.g., 
3 o'clock, 6 o'clock, 12 o'clock positions); rolling element faults manifest as group peak 
characteristics around the 2000 Hz frequency range. However, in industrial scenarios, 
processing rolling bearing vibration signals faces three core challenges: non-stationary and 
nonlinear characteristics: during high-speed rotation, dynamic changes in bearing stiffness, 
load fluctuations, and component wear cause time-varying signal frequency components. 
Traditional Fourier transforms struggle to capture transient fault features, and the resolution 
of time-frequency analysis methods is also limited by signal complexity; strong noise 
interference: background noise from equipment operation, sensor measurement noise, and 
electromagnetic interference can easily mask weak early-stage fault features. Especially when 
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fault damage diameters are less than 0.178 mm, the signal-to-noise ratio can drop to -6 dB, 
further complicating feature extraction; variability in operating conditions: real-time changes 
in industrial equipment speed and load (0~3 HP) cause shifts in fault characteristic frequencies, 
resulting in insufficient generalization of diagnostic models trained under a single operating 
condition and significantly reduced cross-condition diagnostic accuracy. 

2.2. Deep Learning Diagnostic Framework 
The deep learning-based [2] rolling bearing fault diagnosis framework typically includes four 
core modules: data preprocessing, feature extraction, model training, and fault classification. 
Its technical advantages are mainly reflected in the following three aspects: Automatic feature 
learning: High-level abstract features are adaptively extracted from raw vibration signals or 
time-frequency images through network layers such as CNN and GRU, without the need for 
manually designed feature engineering, thereby avoiding subjective errors caused by 
dependence on expert experience; End-to-end diagnosis process: One-dimensional vibration 
signals or two-dimensional time-frequency images are directly input into the network, which 
outputs fault types after computation, simplifying the multi-step traditional diagnosis process 
and improving diagnostic efficiency; Robustness optimization mechanisms: Techniques such as 
data augmentation (overlapping sampling, random noise addition), regularization (Dropout, 
batch normalization), and attention mechanisms enhance the model's adaptability to noise 
interference and operating condition changes, improving diagnostic stability.In recent years, 
research on rolling bearing fault diagnosis has gradually shifted from the application of single 
deep learning models to an integrated architecture of 'signal preprocessing - deep learning 
model - intelligent optimization algorithm,' forming a multi-technology collaborative diagnostic 
system. 

3. Progress in Research on Typical Deep Learning Diagnostic Methods 

3.1. Single-Modal Diagnostic Methods based on Optimized CNN 
3.1.1. COA-CNN: CNN Parameter Global Optimization Driven by Intelligent Optimization 
The core parameters of traditional CNN models (such as convolution kernel size, quantity, 
learning rate, etc.) often rely on empirical selection, which can easily lead the model to fall into 
local optima and fail to fully exploit feature extraction capabilities. To address this issue, Bie 
Fengfeng [3] and others proposed a rolling bearing fault diagnosis method based on CNN 
optimized by the Coati Algorithm (COA-CNN). Its technical innovations are mainly reflected in 
the following three aspects: 1. Differential Continuous Wavelet Transform (DCWT) Signal 
Preprocessing: High-frequency noise is filtered through first-order differentiation, and then the 
one-dimensional vibration signal is converted into a two-dimensional time-frequency map 
using continuous wavelet transform, effectively preserving the complete time-frequency 
information of the signal and solving the problem of insufficient time-frequency resolution in 
traditional wavelet transforms.2. COA Optimization for CNN Parameter Mechanism: By 
simulating the foraging behavior of the coati, CNN parameters are globally optimized in two 
stages. The first stage updates the population positions based on a prey expulsion strategy. The 
second stage dynamically adjusts the search space through predator avoidance behavior, 
ultimately achieving a globally optimal configuration for key parameters such as the number of 
convolution kernels and the learning rate.3. Experimental Verification and Engineering 
Application: On the SQI-MFS mechanical fault comprehensive simulation test platform (bearing 
model MBER-12K, sampling frequency 12800Hz, motor speed 20Hz), COA-CNN achieved a 
classification accuracy of 93.8% for four typical states: normal, inner race fault, outer race fault, 
and rolling element fault, which represents an improvement of 6.0, 4.7, and 8.4 percentage 
points over traditional CNN (87.8%), SVM (89.1%), and BP neural networks (85.4%), 
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respectively. In engineering applications of circulating fans in coal chemical enterprises (fan 
speed 1481 r/min, sampling frequency 12800Hz), this method further improved the fault 
recognition accuracy of fans No. 5, No. 6, and No. 7 to 96.3%, while the computational time 
(18.2s) was significantly lower than that of traditional CNN (21.3s), demonstrating its 
effectiveness under complex industrial conditions.The core value of the COA-CNN method lies 
in solving the CNN parameter tuning problem through an intelligent optimization algorithm, 
significantly improving the model's adaptability to strong noise and non-stationary signals. It 
is particularly suitable for fault diagnosis in industrial equipment under multi-condition and 
high-interference scenarios. However, it should be noted that this method is relatively sensitive 
to the COA population size (set as 30 in the experiments) and the number of iterations (160 
times), which need to be dynamically adjusted according to the data complexity to balance 
optimization efficiency and diagnostic performance. 
3.1.2. Multi-scale CNN and Dilated Convolution: Enhanced Design for Feature 

Extraction 
Traditional CNN models tend to overlook temporal dimension information when processing 
vibration signals, leading to the loss of sequential features and affecting fault diagnosis accuracy. 
To address this issue, Chen Chao et al. proposed a fault diagnosis method that integrates a Multi-
Scale Convolutional Neural Network (MSCNN) with Gated Recurrent Units (GRU), referred to 
as MSCNN-GRU. The structural innovations primarily include three aspects: 1. Multi-scale 
feature extraction module design: Using large convolution kernels of sizes 64×1, 32×1, 16×1, 
and 8×1 with long strides (e.g., 8×1 stride), the input length to the GRU layer is reduced while 
capturing local features at different scales. Following each convolutional path, a GRU layer is 
added to leverage GRU's update and reset gate mechanisms to strengthen sequential feature 
learning, avoiding the traditional CNN's defect of losing temporal correlations in the signal.2. 
Dilated convolution for enhanced spatial feature extraction: Three sequential dilated 
convolution layers with dilation rates of 1, 2, and 7 expand the receptive field from the 
traditional 3×3 to 21×21, effectively capturing large-range spatial features. At the same time, 
the heterogeneous dilation rates weaken grid effects to prevent loss of information continuity.3. 
Noise resistance and generalization optimization: A Dropout layer (dropout rate 0.5) is 
introduced at the model input layer, forcing the network to train based on a few key features, 
enhancing noise robustness. Using a global average pooling (GAP) layer instead of traditional 
fully connected layers reduces the model parameters from 1.233 million to 72,000, significantly 
lowering the overfitting risk and improving generalization.Experimental results on the Case 
Western Reserve University (CWRU) rolling bearing dataset (bearing model SKF6205, fault 
diameters 0.178–0.534 mm, sampling frequency 12 kHz) show that the MSCNN-GRU model 
achieves 100% diagnosis accuracy without noise interference and still maintains 86.75% 
accuracy under -6dB strong noise, significantly outperforming comparison models such as 
WDCNN (37.43%), ResNet18 (24.93%), and CNN-LSTM (31.68%). Cross-dataset validation on 
the Jiangnan University rolling bearing dataset shows that the model's accuracy decreases the 
least as noise increases, further demonstrating its generalization capability. The MSCNN-GRU 
method provides an effective solution for rolling bearing fault diagnosis under strong noise, 
small sample sizes, and variable load conditions, although large convolution kernel designs 
increase computation per convolution, necessitating a trade-off between feature extraction 
precision and computational efficiency. 

3.2. Multi-modal Diagnosis Method Based on CNN-Temporal Model Fusion 
3.2.1. 2D-CNN-GRU: Spatial and Temporal Feature Co-learning Architecture 
To address the low diagnostic accuracy of traditional CNN models under multiple coexisting 
faults (such as inner and outer ring compound faults) and variable operating conditions, Zhang 
Xiong [4] and others proposed a rolling bearing multi-fault diagnosis model (2D-CNN-GRU) that 
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integrates a two-dimensional convolutional neural network (2D-CNN) with a gated recurrent 
unit (GRU). Its technical features are mainly reflected in the following three aspects: Dual-
branch feature extraction architecture: 2D-CNN is used as a spatial feature extractor. Through 
three convolutional layers (kernel sizes 20×20×32, 9×9×64, and 4×4×128) and max-pooling 
layers, local fault spatial features are extracted from the two-dimensional time–frequency 
diagram; the GRU layer serves as a temporal feature extractor, utilizing the gating mechanism 
to model the time dependencies of vibration signals, compensating for the CNN model's 
insufficient capability to model long-sequence information.Cross-dataset performance 
validation: On the XJTU-SY rolling bearing dataset (bearing speed 2100 r/min, radial force 12 
kN) and the QPZZ-II multi-condition dataset (including 12 states such as 
acceleration/deceleration, unbalanced loading, and compound faults), the diagnostic accuracy 
of the 2D-CNN-GRU model exceeds 95%, reaching up to 98%, significantly outperforming 
comparative models such as AlexNet (71.73%), MobileNet-V2 (51.92%), and LeNet-5 
(66.15%).Model efficiency optimization: Through parameter pruning and structural 
simplification, the 2D-CNN-GRU model has only 609,000 parameters, a 73.9% reduction 
compared to AlexNet (2,332,000), and the training time is reduced by more than 40%, meeting 
the real-time diagnostic requirements of industrial scenarios.The core advantage of this model 
lies in the collaborative use of spatial and temporal features, effectively enhancing adaptability 
to compound faults and variable operating conditions, making it suitable for industrial 
scenarios with multiple fault types and complex working conditions. However, it should be 
noted that this method requires converting one-dimensional vibration signals into two-
dimensional time–frequency diagrams, increasing the computational cost of preprocessing, 
which needs further optimization in scenarios with extremely high real-time requirements. 
3.2.2. Comparative Analysis of MSCNN-GRU and 2D-CNN-GRU 
Both MSCNN-GRU and 2D-CNN-GRU focus on mining temporal dimension information, 
achieving collaborative learning of spatial-temporal features through the integration of CNN 
and GRU. However, their technical approaches differ significantly: MSCNN-GRU uses a one-
dimensional CNN to directly process raw vibration signals, avoiding information loss during 
the time-frequency transformation process and performing better under high-noise conditions 
(-6dB noise accuracy 86.75% vs 83.64%); 2D-CNN-GRU indirectly extracts spatial features 
through two-dimensional time-frequency maps, making it more suitable for complex 
compound fault scenarios, and demonstrating stronger generalization ability in multi-fault 
classification (12 categories). From an engineering application perspective, MSCNN-GRU is 
more suitable for scenarios with limited sensor resources and high real-time requirements, 
while 2D-CNN-GRU is better suited for high-precision multi-fault diagnosis of critical 
equipment. 

3.3. Global Feature Fusion Method based on CNN-Transformer 
Although CNN models possess powerful local feature extraction capabilities, their ability to 
model global contextual information is insufficient, which can easily lead to the omission of 
dispersed fault features. To address this issue, Xu Kunbo [5] and others proposed a fusion 
diagnostic model based on Fast Fourier Transform (FFT), dual-channel CNN, and Transformer 
(FFT-CNN-Transformer). The technical innovations are mainly reflected in the following three 
aspects: Dual-channel feature extraction in time and frequency domains: By using FFT to 
convert one-dimensional time-domain signals into frequency-domain signals, a time-frequency 
dual-channel CNN architecture is constructed. The time-domain channel uses a 1D CNN 
(convolution kernel 3×1, channels 1→32→64→128) to extract local temporal features; the 
frequency-domain channel uses a similar network structure (channels 1→16→32→64) to 
capture frequency distribution features, addressing the limitations of traditional single-domain 
analysis with limited information. Transformer encoder for global feature fusion: The decoder 
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part of the Transformer model is removed, retaining only the encoder layers. Multi-head 
attention is used to dynamically allocate weights to dual-channel features, enhancing the focus 
on key fault features (such as inner race fault feature frequency 162.23 Hz, outer race fault 
feature frequency 527.04 Hz) while suppressing non-key features and noise interference. 
Efficient training strategy: Batch normalization (BN) layers are introduced to accelerate model 
convergence, Dropout (probability 0.5) is used to prevent overfitting, and the Adam optimizer 
(learning rate 0.0002) with cross-entropy loss function is chosen to optimize model parameters, 
improving training efficiency and stability. Experiments on the CWRU rolling bearing dataset 
(sampling frequency 12 kHz, fault diameter 0.021 in) show that the FFT-CNN-Transformer 
model achieves an average diagnostic accuracy of 99.85%, significantly outperforming 
comparative models such as multi-scale graph-Transformer (98.20%), DRSN-Transformer 
(97.46%), and CNN-Transformer (96.66%). The training time is 15.13 s, improved by 13.8% 
compared to CNN-Transformer (17.55 s), validating its efficiency. The core value of this model 
lies in realizing global feature fusion through the Transformer, effectively overcoming the 
limitations of CNN in local feature extraction, making it suitable for complex scenarios with 
dispersed fault features and superimposed multi-frequency components. However, it should be 
noted that the computational complexity of the Transformer's self-attention mechanism is high, 
and on large-scale datasets, lightweight optimization techniques such as sparse attention and 
model quantization are required. 

3.4. Basic Diagnostic Methods based on Traditional CNN  
3.4.1. One-Dimensional CNN: Lightweight Models and Engineering Practical Design 
To address the diagnostic cost and real-time requirements of equipment monitoring systems 
for small and medium-sized enterprises, Jiang Wei and others constructed a basic multi-layer 
CNN model based on the CWRU dataset, focusing on practical optimizations for engineering 
scenarios. Its technical features are mainly reflected in the following three aspects: 
standardized data preprocessing flow: wavelet transform is used to remove signal noise, data 
augmentation is achieved through time-axis shifting and random noise addition, and short-time 
Fourier transform (STFT) is applied for time-frequency conversion to improve signal quality; 
lightweight model structure design: a 2-layer one-dimensional CNN (3×1 convolution kernel) 
with 2 max-pooling layers is used, ReLU activation function and Adam optimizer are chosen, 
with the model containing only 120,000 parameters—over 90% fewer than complex fusion 
models, reducing training time to one-third of traditional models; multi-fault classification 
performance verification: testing on 10 fault types (including normal condition, inner ring, 
outer ring, rolling element faults, and various defect diameters) achieved an accuracy of 98.9%, 
meeting the diagnostic needs of small- to medium-scale industrial scenarios. Although this 
method does not introduce complex fusion architectures, the combination of standardized 
preprocessing and lightweight modeling provides a simple and effective diagnostic solution for 
industrial scenarios with low cost and high real-time requirements, offering significant 
practical engineering value. 
3.4.2. VMD-CNN: Signal Decomposition and Feature Enhancement Collaborative 

Method 
The operating environment of the spindle box bearings in machine tools is complex, influenced 
by multiple sources of interference such as gear mesh noise and cutting vibrations, making fault 
feature extraction challenging. To address this issue, Chen Shuori [6] proposed a fusion 
diagnostic method based on Variational Mode Decomposition (VMD) and CNN (VMD-CNN). The 
technical innovations mainly lie in the following three aspects: KHA-optimized VMD 
parameters: Using the Krill Herd Algorithm (KHA) with envelope entropy as the fitness function 
to optimize the number of decomposition layers and the quadratic penalty factor of VMD, 
enabling adaptive decomposition of vibration signals to obtain the optimal Intrinsic Mode 
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Functions (IMFs);Kurtosis criterion to select effective components: Selecting IMF components 
with the highest kurtosis values for signal reconstruction, emphasizing fault impact features 
while suppressing background noise interference;CNN fault classification: Inputting the 
reconstructed signals into a 3-layer CNN model (convolution kernel 5×1, max pooling), 
achieving a diagnostic accuracy of 91.53% for five machine tool bearing conditions (normal, 
inner race fault, outer race fault, rolling element fault, and composite fault), outperforming 
comparative methods such as EMD-CNN (86.59%) and EEMD-CNN (88.20%).The core 
advantage of this method is that it addresses the incomplete decomposition problem of non-
stationary signals through VMD and combines it with CNN for precise fault feature extraction, 
making it particularly suitable for industrial scenarios with strong impacts and multiple 
interference sources, such as machine tools and rolling mills. However, VMD has high 
computational complexity, requiring a balance between decomposition accuracy and real-time 
performance. 

4. Key Technology Comparison and Performance Analysis 

4.1. Comparison of Preprocessing Methods 
Signal preprocessing is a key step in improving the performance of rolling bearing fault 
diagnosis. The feature enhancement effects and applicable scenarios of different preprocessing 
techniques vary significantly. A detailed comparison is shown in Table 1: 
 

Table 1. Comparison of Different Preprocessing Techniques 
Preprocessing method Core Principle Technical advantage Limitations Applicable Scenarios 
 
Differential Continuous 

Wavelet Transform 
(DCWT) 

First-order difference 
denoising Continuous 

wavelet transform 

High time-frequency 
resolution, 
effectively 
suppresses high-
frequency noise, and 
preserves transient 
features 

Computationally 
intensive and 

sensitive to the 
choice of wavelet 

basis functions 

Non-stationary 
signals and scenarios 

with strong noise 
interference (such as 

coal chemical 
circulating fans and 

wind power 
bearings) 

 
 

Fast Fourier 
Transform(FFT) 

Time-domain 
signal→Frequency 

domain signal 
conversion 

The frequency 
components are 

clear, the 
computational 

efficiency is high, and 
it is convenient to 

extract characteristic 
frequencies. 

Only applicable to 
steady signals, 

unable to capture 
transient 

characteristics 

Scenarios with stable 
operating conditions 

and known fault 
characteristic 

frequencies (such as 
laboratory simulation 

tests or fixed-speed 
motors) 

 
Variational Mode 

Decomposition(VMD) 

Adaptive 
decomposition into 

IMF components, 
minimizing 

constrained variational 
problems 

High decomposition 
accuracy, strong 

anti-mode aliasing 
capability, suitable 

for nonlinear signals 

Parameter-
sensitive, requires 
optimization with 

intelligent 
algorithms 

Multi-component, 
high-impact signal 
scenarios (such as 

machine tool spindle 
boxes, rolling mill 

bearings) 
 

Short-Time Fourier 
Transform(STFT) 

Sliding window Fourier 
transform, taking into 

account both time-
domain and frequency-

domain information 

Realize time-
frequency localized 

analysis with 
moderate 

computational 
complexity 

The window size is 
fixed, and there is a 
trade-off between 

time and frequency 
resolution. 

Mid-to-low frequency 
signals, scenarios 

with relatively 
concentrated fault 

characteristics (such 
as low-speed rotating 

equipment) 

4.2. Engineering Application Case Analysis 
4.2.1. Fault Diagnosis of Coal Chemical Circulating Fan Bearings (COA-CNN) 
Bie Fengfeng et al. took the rolling bearings of the circulating fan in a certain coal chemical 
enterprise as the research object (fan model: unknown, speed 1481 r/min, sampling frequency 



Frontiers in Science and Engineering Volume 5 Issue 10, 2025

ISSN: 2710-0588 

 

74 

12,800 Hz). Using a 1A314E three-axis acceleration sensor, vibration signals were collected 
from the rear end (measuring point 1), front end (measuring point 2), and output end 
(measuring point 3) of the fan to carry out engineering application verification. Operating 
conditions and signal feature analysis: The horizontal vibration intensity at the drive end of Fan 
No. 5 was 3.16 mm/s (close to the alarm threshold of 4.5 mm/s), and the vibration signal 
showed a deterioration trend; the vibration intensity of Fan No. 7 was 16 mm/s (exceeding the 
shutdown threshold of 11.2 mm/s), with no obvious low-frequency fault characteristics and 
severe high-frequency noise interference. Diagnosis results: The COA-CNN model, through 
DCWT preprocessing and parameter optimization, achieved a fault identification accuracy of 
96.3% for Fans No. 5, 6, and 7, successfully diagnosing the rolling element fault of Fan No. 7, 
which is 6.8 percentage points higher than the traditional CNN model (89.5%). This provides a 
precise basis for equipment shutdown maintenance and prevents production losses caused by 
the escalation of faults. 
Chen Shuori and others focused on a certain type of CNC machine tool spindle box rolling 
bearing (deep groove ball bearing, fault depth 1–2 mm, width 0.2–0.4 mm), collecting vibration 
signals under five operating conditions (117,000 vibration points per condition) to carry out 
engineering application verification: Interference and signal feature analysis: During machine 
tool operation, there are multiple sources of interference such as gear meshing noise and 
cutting vibrations, resulting in a low signal-to-noise ratio (0–2 dB), which easily masks fault 
features. Diagnosis results: The VMD-CNN model, through KHA optimization of VMD 
parameters, achieves effective signal decomposition and feature enhancement. For compound 
faults (inner and outer rings), the diagnosis accuracy reaches 91.53%, an improvement of 5 
percentage points compared to the traditional EMD-CNN method, enabling early warning of 
machine tool bearing faults and reducing equipment maintenance costs. 

5. Challenges and Future Development Directions 

5.1. Current Challenges in Research 
Although deep learning-based rolling bearing fault diagnosis technology has made significant 
progress, it still faces the following challenges in industrial applications: Small sample and data 
imbalance issues: In industrial scenarios, normal operation data of rolling bearings account for 
over 90%, while fault data (especially early-stage and rare faults) are scarce. Existing deep 
learning models largely rely on large-scale labeled data, and their generalization ability is 
insufficient under small-sample conditions;Insufficient adaptability to dynamic operating 
conditions: Real-time variations in industrial equipment speed and load cause frequency shifts 
in fault features. Most existing models are trained under fixed conditions, resulting in a 
10%~20% drop in diagnostic accuracy across different conditions, making it difficult to meet 
dynamic operating requirements;Conflict between model lightweight and real-time 
performance: Complex fusion models (such as FFT-CNN-Transformer) have parameters in the 
millions to tens of millions and high computational complexity, making them difficult to deploy 
on edge devices (e.g., sensor nodes, embedded systems), thus failing to meet industrial real-
time diagnostic needs;Poor model interpretability: Deep learning models are essentially "black-
box" structures, making it hard to explain the relationship between fault features and 
diagnostic results, which hinders validation and trust by industrial experts and limits practical 
engineering applications. 

5.2. Future Development Directions 
To address the above challenges and in consideration of industrial scenario requirements, the 
future development of rolling bearing fault diagnosis technology can move in the following 
directions:1. Development of few-shot learning techniques: By combining transfer learning 
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(domain adaptation, fine-tuning of pre-trained models), generative adversarial networks 
(GANs), and other technologies, the problem of scarce fault data can be addressed. For instance, 
GANs can be used to generate simulated early fault data to expand the training dataset; pre-
trained models can learn general features on large-scale public datasets (such as CWRU) and 
then be fine-tuned with a small amount of industrial data to improve generalization under few-
shot conditions.2. Optimization of robustness under dynamic operating conditions: Introduce 
adaptive feature alignment techniques (e.g., dynamic time warping (DTW), attention 
mechanisms) to achieve dynamic matching of fault features; develop variable-speed fault 
diagnosis models based on instantaneous frequency estimation to accommodate fluctuations 
in industrial equipment speed; integrate reinforcement learning techniques to allow models to 
autonomously adjust parameters with changing operating conditions, enhancing dynamic 
adaptability.3. Lightweight model design and edge deployment: Employ model compression 
(pruning, quantization, knowledge distillation), lightweight network architectures (such as 
MobileNet, EfficientNet), and hardware acceleration (FPGA, GPU) techniques to reduce model 
parameter scale to below the million level while ensuring diagnostic accuracy, meeting edge 
device deployment requirements. For example, knowledge distillation can transfer the 
knowledge of complex fused models to lightweight models to achieve a balance between 
accuracy and efficiency.4. Enhancement of model interpretability: Leverage attention 
visualization (heatmaps), causal inference, and model distillation to reveal the contribution 
mechanism of key fault features to diagnostic results. For example, heatmaps can intuitively 
display the time-frequency regions that CNNs focus on, explaining the basis of fault 
identification; causal inference can analyze the causal relationship between features and fault 
types, improving model reliability.5. Construction of a multimodal fusion diagnostic system: 
Integrate multi-source monitoring data such as vibration, temperature, oil analysis, and 
acoustic emission to build multimodal deep learning models (e.g., multi-input CNN-
Transformer) for more comprehensive and reliable fault diagnosis. For instance, vibration 
signals can be used to identify early faults, combined with temperature signals to assess fault 
severity, thereby enhancing diagnostic comprehensiveness. 

6. Conclusion 

A review of six research articles on rolling bearing fault diagnosis shows that deep learning-
based intelligent diagnostic methods, particularly hybrid models that integrate convolutional 
neural networks (CNN) with recurrent neural networks (such as GRU and LSTM) or attention 
mechanisms (such as Transformers), have become the current mainstream trend. Compared 
with traditional methods that rely on manual feature extraction, deep learning methods have 
stronger adaptive feature extraction capabilities and higher diagnostic accuracy.Models such 
as COA-CNN, FFT-CNN-Transformer, MSCNN-GRU, and 2D-CNN-GRU have demonstrated 
excellent diagnostic performance under various experimental conditions, with accuracy rates 
generally exceeding 95%, and some models achieving over 99% on public datasets. These 
models effectively enhance robustness and generalization under complex conditions such as 
noise interference, variable operating conditions, and small sample sizes by incorporating 
optimization algorithms, multi-scale feature extraction, time-frequency fusion, and attention 
mechanisms.Moreover, studies generally use the Case Western Reserve University (CWRU) 
dataset for validation, with some also utilizing datasets from Jiangnan University, XJTU-SY, and 
others to enhance the engineering applicability of the models. Overall, the future development 
of intelligent fault diagnosis technology for rolling bearings will focus on integrating 
spatiotemporal features, optimizing network structures, and improving model lightweight 
performance and real-time capabilities. 
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