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Abstract

Rolling bearings, as core transmission components in rotating machinery, directly
determine the reliability of equipment operation and the safety of industrial production.
They play an irreplaceable role in key sectors such as aerospace, rail transportation,
petrochemical industries, and intelligent manufacturing. In complex working conditions,
bearing vibration signals exhibit strong non-stationarity and significant nonlinearity.
Traditional fault diagnosis methods face challenges such as a high dependency on
manual feature extraction, poor robustness under complex conditions, and insufficient
ability to recognize multiple faults simultaneously. Deep learning techniques, with their
advantages of end-to-end automatic feature learning and complex pattern recognition,
have become the core research direction in the field of rolling bearing fault diagnosis.
This paper systematically reviews recent research on rolling bearing fault diagnosis
based on Convolutional Neural Networks (CNN) and their fusion models. It focuses on
analyzing the technical principles, model architecture design, and performance
optimization mechanisms of typical methods such as COA-CNN, FFT-CNN-Transformer,
MSCNN-GRU, and 2D-CNN-GRU. The paper also compares the feature enhancement
effects of preprocessing techniques such as Discrete Continuous Wavelet Transform
(DCWT), Fast Fourier Transform (FFT), and Variational Mode Decomposition (VMD).
Additionally, it explores optimization strategies for diagnostic robustness under noise
interference, varying operating conditions, and small sample scenarios. Engineering
application cases, such as coal chemical circulation fans and CNC machine tool spindle
boxes, are used to verify the practical effectiveness of these methods. Finally, the paper
looks ahead to future developments in areas such as small sample learning, dynamic
condition adaptation, model lightweighting, and multi-modal fusion, providing
theoretical references and technical support for the development and industrial
application of intelligent diagnostic systems for rolling bearings.
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1. Introduction

As key supporting components of rotating machinery, rolling bearings are responsible for the
positioning of rotating bodies and power transmission, and their health status directly affects
the overall operational stability and service life of equipment. According to industrial fault
statistics, over 40% of rotating machinery failures are caused by rolling bearing failures.
Moreover, the characteristic signals in the early stages of failure are weak and can be easily
obscured by high-speed operation, variable load impacts, and equipment background noise. If
not diagnosed and warned in time, this may lead to equipment downtime, production
interruptions, or even major safety accidents, causing huge economic losses. Traditional rolling
bearing fault diagnosis methods are based on the core framework of "signal processing - feature
extraction - pattern recognition," extracting fault features through time-domain analysis (mean,
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root mean square, kurtosis, and other statistics), frequency-domain analysis (Fourier
transform), or time-frequency analysis (wavelet transform, empirical mode decomposition
(EMD))[1], and then using shallow machine learning models such as support vector machines
(SVM) or BP neural networks for fault classification. However, these methods have significant
limitations: first, the feature extraction process heavily relies on expert knowledge, has poor
adaptability to non-stationary and nonlinear vibration signals, and struggles to capture
transient fault features; second, in environments with strong noise interference or compound
faults, manually designed features are easily contaminated by noise, leading to a significant
decline in diagnostic accuracy; third, shallow models have limited capability to handle large-
scale, multimodal industrial monitoring data, and their generalization performance may not
meet the demands of complex operating conditions. With the rapid development of artificial
intelligence, deep learning, thanks to its adaptive feature learning capability in deep network
structures, breaks the stepwise limitations of traditional diagnostic methods and realizes a
direct mapping from raw vibration signals to fault types, providing a new approach to
diagnosing rolling bearing failures in complex operating conditions. Convolutional neural
networks (CNNs), due to their strong local feature extraction ability and efficient parameter
sharing mechanisms, have become the mainstream model for rolling bearing fault diagnosis,
giving rise to optimized single-modal structures such as multi-scale CNNs and dilated
convolution CNNs, as well as multi-modal fusion architectures like CNN-GRU and CNN-
Transformer. At the same time, the introduction of intelligent optimization algorithms (such as
the Coati Optimization Algorithm (COA) and Harris Hawk Optimization (HHO)) and advanced
signal preprocessing techniques further enhances the model's adaptability to complex
operating conditions. Based on six representative research papers, this article systematically
reviews the research progress of deep learning in rolling bearing fault diagnosis from four
dimensions: technical principles, model design, experimental validation, and engineering
applications, analyzing the core advantages and applicable scenarios of various methods, and

providing comprehensive references for technological innovation and engineering practice in
this field.

2. Core Technologies for Rolling Bearing Fault Diagnosis

2.1. Fault Signal Characteristics and Diagnostic Challenges

Common types of rolling bearing faults include inner ring faults, outer ring faults, rolling
element faults, and multi-component compound faults. The vibration signal characteristics are
significantly related to the fault mechanisms: under normal operating conditions, bearing
vibration intensity is low (typically <0.2 mm/s), with frequency components concentrated in
the low-frequency range (0~1000 Hz); inner ring faults, caused by periodic impacts between
rolling elements and the inner raceway, result in a significant increase in vibration intensity
(can exceed 0.7 mm/s), with frequency distribution showing a dual-band concentration at
0~1000 Hz and 1500~2000 Hz; outer ring fault vibration signals are prominent in the low-
frequency range and exhibit characteristic differences depending on the damage location (e.g.,
3 o'clock, 6 o'clock, 12 o'clock positions); rolling element faults manifest as group peak
characteristics around the 2000 Hz frequency range. However, in industrial scenarios,
processing rolling bearing vibration signals faces three core challenges: non-stationary and
nonlinear characteristics: during high-speed rotation, dynamic changes in bearing stiffness,
load fluctuations, and component wear cause time-varying signal frequency components.
Traditional Fourier transforms struggle to capture transient fault features, and the resolution
of time-frequency analysis methods is also limited by signal complexity; strong noise
interference: background noise from equipment operation, sensor measurement noise, and
electromagnetic interference can easily mask weak early-stage fault features. Especially when
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fault damage diameters are less than 0.178 mm, the signal-to-noise ratio can drop to -6 dB,
further complicating feature extraction; variability in operating conditions: real-time changes
in industrial equipment speed and load (0~3 HP) cause shifts in fault characteristic frequencies,
resulting in insufficient generalization of diagnostic models trained under a single operating
condition and significantly reduced cross-condition diagnostic accuracy.

2.2. Deep Learning Diagnostic Framework

The deep learning-based [2] rolling bearing fault diagnosis framework typically includes four
core modules: data preprocessing, feature extraction, model training, and fault classification.
Its technical advantages are mainly reflected in the following three aspects: Automatic feature
learning: High-level abstract features are adaptively extracted from raw vibration signals or
time-frequency images through network layers such as CNN and GRU, without the need for
manually designed feature engineering, thereby avoiding subjective errors caused by
dependence on expert experience; End-to-end diagnosis process: One-dimensional vibration
signals or two-dimensional time-frequency images are directly input into the network, which
outputs fault types after computation, simplifying the multi-step traditional diagnosis process
and improving diagnostic efficiency; Robustness optimization mechanisms: Techniques such as
data augmentation (overlapping sampling, random noise addition), regularization (Dropout,
batch normalization), and attention mechanisms enhance the model's adaptability to noise
interference and operating condition changes, improving diagnostic stability.In recent years,
research on rolling bearing fault diagnosis has gradually shifted from the application of single
deep learning models to an integrated architecture of 'signal preprocessing - deep learning
model - intelligent optimization algorithm,' forming a multi-technology collaborative diagnostic
system.

3. Progress in Research on Typical Deep Learning Diagnostic Methods

3.1. Single-Modal Diagnostic Methods based on Optimized CNN
3.1.1. COA-CNN: CNN Parameter Global Optimization Driven by Intelligent Optimization

The core parameters of traditional CNN models (such as convolution kernel size, quantity,
learning rate, etc.) often rely on empirical selection, which can easily lead the model to fall into
local optima and fail to fully exploit feature extraction capabilities. To address this issue, Bie
Fengfeng [3] and others proposed a rolling bearing fault diagnosis method based on CNN
optimized by the Coati Algorithm (COA-CNN). Its technical innovations are mainly reflected in
the following three aspects: 1. Differential Continuous Wavelet Transform (DCWT) Signal
Preprocessing: High-frequency noise is filtered through first-order differentiation, and then the
one-dimensional vibration signal is converted into a two-dimensional time-frequency map
using continuous wavelet transform, effectively preserving the complete time-frequency
information of the signal and solving the problem of insufficient time-frequency resolution in
traditional wavelet transforms.2. COA Optimization for CNN Parameter Mechanism: By
simulating the foraging behavior of the coati, CNN parameters are globally optimized in two
stages. The first stage updates the population positions based on a prey expulsion strategy. The
second stage dynamically adjusts the search space through predator avoidance behavior,
ultimately achieving a globally optimal configuration for key parameters such as the number of
convolution kernels and the learning rate.3. Experimental Verification and Engineering
Application: On the SQI-MFS mechanical fault comprehensive simulation test platform (bearing
model MBER-12K, sampling frequency 12800Hz, motor speed 20Hz), COA-CNN achieved a
classification accuracy of 93.8% for four typical states: normal, inner race fault, outer race fault,
and rolling element fault, which represents an improvement of 6.0, 4.7, and 8.4 percentage
points over traditional CNN (87.8%), SVM (89.1%), and BP neural networks (85.4%),
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respectively. In engineering applications of circulating fans in coal chemical enterprises (fan
speed 1481 r/min, sampling frequency 12800Hz), this method further improved the fault
recognition accuracy of fans No. 5, No. 6, and No. 7 to 96.3%, while the computational time
(18.2s) was significantly lower than that of traditional CNN (21.3s), demonstrating its
effectiveness under complex industrial conditions.The core value of the COA-CNN method lies
in solving the CNN parameter tuning problem through an intelligent optimization algorithm,
significantly improving the model's adaptability to strong noise and non-stationary signals. It
is particularly suitable for fault diagnosis in industrial equipment under multi-condition and
high-interference scenarios. However, it should be noted that this method is relatively sensitive
to the COA population size (set as 30 in the experiments) and the number of iterations (160
times), which need to be dynamically adjusted according to the data complexity to balance
optimization efficiency and diagnostic performance.

3.1.2. Multi-scale CNN and Dilated Convolution: Enhanced Design for Feature
Extraction

Traditional CNN models tend to overlook temporal dimension information when processing
vibration signals, leading to the loss of sequential features and affecting fault diagnosis accuracy.
To address this issue, Chen Chao et al. proposed a fault diagnosis method that integrates a Multi-
Scale Convolutional Neural Network (MSCNN) with Gated Recurrent Units (GRU), referred to
as MSCNN-GRU. The structural innovations primarily include three aspects: 1. Multi-scale
feature extraction module design: Using large convolution kernels of sizes 64x1, 32x1, 16x1,
and 8x1 with long strides (e.g., 8x1 stride), the input length to the GRU layer is reduced while
capturing local features at different scales. Following each convolutional path, a GRU layer is
added to leverage GRU's update and reset gate mechanisms to strengthen sequential feature
learning, avoiding the traditional CNN's defect of losing temporal correlations in the signal.2.
Dilated convolution for enhanced spatial feature extraction: Three sequential dilated
convolution layers with dilation rates of 1, 2, and 7 expand the receptive field from the
traditional 3x3 to 21x21, effectively capturing large-range spatial features. At the same time,
the heterogeneous dilation rates weaken grid effects to prevent loss of information continuity.3.
Noise resistance and generalization optimization: A Dropout layer (dropout rate 0.5) is
introduced at the model input layer, forcing the network to train based on a few key features,
enhancing noise robustness. Using a global average pooling (GAP) layer instead of traditional
fully connected layers reduces the model parameters from 1.233 million to 72,000, significantly
lowering the overfitting risk and improving generalization.Experimental results on the Case
Western Reserve University (CWRU) rolling bearing dataset (bearing model SKF6205, fault
diameters 0.178-0.534 mm, sampling frequency 12 kHz) show that the MSCNN-GRU model
achieves 100% diagnosis accuracy without noise interference and still maintains 86.75%
accuracy under -6dB strong noise, significantly outperforming comparison models such as
WDCNN (37.43%), ResNet18 (24.93%), and CNN-LSTM (31.68%). Cross-dataset validation on
the Jiangnan University rolling bearing dataset shows that the model's accuracy decreases the
least as noise increases, further demonstrating its generalization capability. The MSCNN-GRU
method provides an effective solution for rolling bearing fault diagnosis under strong noise,
small sample sizes, and variable load conditions, although large convolution kernel designs
increase computation per convolution, necessitating a trade-off between feature extraction
precision and computational efficiency.

3.2. Multi-modal Diagnosis Method Based on CNN-Temporal Model Fusion
3.2.1. 2D-CNN-GRU: Spatial and Temporal Feature Co-learning Architecture

To address the low diagnostic accuracy of traditional CNN models under multiple coexisting
faults (such as inner and outer ring compound faults) and variable operating conditions, Zhang
Xiong [4] and others proposed a rolling bearing multi-fault diagnosis model (2D-CNN-GRU) that
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integrates a two-dimensional convolutional neural network (2D-CNN) with a gated recurrent
unit (GRU). Its technical features are mainly reflected in the following three aspects: Dual-
branch feature extraction architecture: 2D-CNN is used as a spatial feature extractor. Through
three convolutional layers (kernel sizes 20x20x32, 9x9x64, and 4x4x128) and max-pooling
layers, local fault spatial features are extracted from the two-dimensional time-frequency
diagram; the GRU layer serves as a temporal feature extractor, utilizing the gating mechanism
to model the time dependencies of vibration signals, compensating for the CNN model's
insufficient capability to model long-sequence information.Cross-dataset performance
validation: On the X]JTU-SY rolling bearing dataset (bearing speed 2100 r/min, radial force 12
kN) and the QPZZ-II multi-condition dataset (including 12 states such as
acceleration/deceleration, unbalanced loading, and compound faults), the diagnostic accuracy
of the 2D-CNN-GRU model exceeds 95%, reaching up to 98%, significantly outperforming
comparative models such as AlexNet (71.73%), MobileNet-V2 (51.92%), and LeNet-5
(66.15%).Model efficiency optimization: Through parameter pruning and structural
simplification, the 2D-CNN-GRU model has only 609,000 parameters, a 73.9% reduction
compared to AlexNet (2,332,000), and the training time is reduced by more than 40%, meeting
the real-time diagnostic requirements of industrial scenarios.The core advantage of this model
lies in the collaborative use of spatial and temporal features, effectively enhancing adaptability
to compound faults and variable operating conditions, making it suitable for industrial
scenarios with multiple fault types and complex working conditions. However, it should be
noted that this method requires converting one-dimensional vibration signals into two-
dimensional time-frequency diagrams, increasing the computational cost of preprocessing,
which needs further optimization in scenarios with extremely high real-time requirements.

3.2.2. Comparative Analysis of MSCNN-GRU and 2D-CNN-GRU

Both MSCNN-GRU and 2D-CNN-GRU focus on mining temporal dimension information,
achieving collaborative learning of spatial-temporal features through the integration of CNN
and GRU. However, their technical approaches differ significantly: MSCNN-GRU uses a one-
dimensional CNN to directly process raw vibration signals, avoiding information loss during
the time-frequency transformation process and performing better under high-noise conditions
(-6dB noise accuracy 86.75% vs 83.64%); 2D-CNN-GRU indirectly extracts spatial features
through two-dimensional time-frequency maps, making it more suitable for complex
compound fault scenarios, and demonstrating stronger generalization ability in multi-fault
classification (12 categories). From an engineering application perspective, MSCNN-GRU is
more suitable for scenarios with limited sensor resources and high real-time requirements,
while 2D-CNN-GRU is better suited for high-precision multi-fault diagnosis of critical
equipment.

3.3. Global Feature Fusion Method based on CNN-Transformer

Although CNN models possess powerful local feature extraction capabilities, their ability to
model global contextual information is insufficient, which can easily lead to the omission of
dispersed fault features. To address this issue, Xu Kunbo [5] and others proposed a fusion
diagnostic model based on Fast Fourier Transform (FFT), dual-channel CNN, and Transformer
(FFT-CNN-Transformer). The technical innovations are mainly reflected in the following three
aspects: Dual-channel feature extraction in time and frequency domains: By using FFT to
convert one-dimensional time-domain signals into frequency-domain signals, a time-frequency
dual-channel CNN architecture is constructed. The time-domain channel uses a 1D CNN
(convolution kernel 3x1, channels 1-32—-64—-128) to extract local temporal features; the
frequency-domain channel uses a similar network structure (channels 1-16—32—-64) to
capture frequency distribution features, addressing the limitations of traditional single-domain
analysis with limited information. Transformer encoder for global feature fusion: The decoder
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part of the Transformer model is removed, retaining only the encoder layers. Multi-head
attention is used to dynamically allocate weights to dual-channel features, enhancing the focus
on key fault features (such as inner race fault feature frequency 162.23 Hz, outer race fault
feature frequency 527.04 Hz) while suppressing non-key features and noise interference.
Efficient training strategy: Batch normalization (BN) layers are introduced to accelerate model
convergence, Dropout (probability 0.5) is used to prevent overfitting, and the Adam optimizer
(learning rate 0.0002) with cross-entropy loss function is chosen to optimize model parameters,
improving training efficiency and stability. Experiments on the CWRU rolling bearing dataset
(sampling frequency 12 kHz, fault diameter 0.021 in) show that the FFT-CNN-Transformer
model achieves an average diagnostic accuracy of 99.85%, significantly outperforming
comparative models such as multi-scale graph-Transformer (98.20%), DRSN-Transformer
(97.46%), and CNN-Transformer (96.66%). The training time is 15.13 s, improved by 13.8%
compared to CNN-Transformer (17.55 s), validating its efficiency. The core value of this model
lies in realizing global feature fusion through the Transformer, effectively overcoming the
limitations of CNN in local feature extraction, making it suitable for complex scenarios with
dispersed fault features and superimposed multi-frequency components. However, it should be
noted that the computational complexity of the Transformer's self-attention mechanism is high,
and on large-scale datasets, lightweight optimization techniques such as sparse attention and
model quantization are required.

3.4. Basic Diagnostic Methods based on Traditional CNN
3.4.1. One-Dimensional CNN: Lightweight Models and Engineering Practical Design

To address the diagnostic cost and real-time requirements of equipment monitoring systems
for small and medium-sized enterprises, Jiang Wei and others constructed a basic multi-layer
CNN model based on the CWRU dataset, focusing on practical optimizations for engineering
scenarios. Its technical features are mainly reflected in the following three aspects:
standardized data preprocessing flow: wavelet transform is used to remove signal noise, data
augmentation is achieved through time-axis shifting and random noise addition, and short-time
Fourier transform (STFT) is applied for time-frequency conversion to improve signal quality;
lightweight model structure design: a 2-layer one-dimensional CNN (3x1 convolution kernel)
with 2 max-pooling layers is used, ReLU activation function and Adam optimizer are chosen,
with the model containing only 120,000 parameters—over 90% fewer than complex fusion
models, reducing training time to one-third of traditional models; multi-fault classification
performance verification: testing on 10 fault types (including normal condition, inner ring,
outer ring, rolling element faults, and various defect diameters) achieved an accuracy of 98.9%,
meeting the diagnostic needs of small- to medium-scale industrial scenarios. Although this
method does not introduce complex fusion architectures, the combination of standardized
preprocessing and lightweight modeling provides a simple and effective diagnostic solution for
industrial scenarios with low cost and high real-time requirements, offering significant
practical engineering value.

3.4.2. VMD-CNN: Signal Decomposition and Feature Enhancement Collaborative
Method

The operating environment of the spindle box bearings in machine tools is complex, influenced
by multiple sources of interference such as gear mesh noise and cutting vibrations, making fault
feature extraction challenging. To address this issue, Chen Shuori [6] proposed a fusion
diagnostic method based on Variational Mode Decomposition (VMD) and CNN (VMD-CNN). The
technical innovations mainly lie in the following three aspects: KHA-optimized VMD
parameters: Using the Krill Herd Algorithm (KHA) with envelope entropy as the fitness function
to optimize the number of decomposition layers and the quadratic penalty factor of VMD,
enabling adaptive decomposition of vibration signals to obtain the optimal Intrinsic Mode
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Functions (IMFs);Kurtosis criterion to select effective components: Selecting IMF components
with the highest kurtosis values for signal reconstruction, emphasizing fault impact features
while suppressing background noise interference;CNN fault classification: Inputting the
reconstructed signals into a 3-layer CNN model (convolution kernel 5x1, max pooling),
achieving a diagnostic accuracy of 91.53% for five machine tool bearing conditions (normal,
inner race fault, outer race fault, rolling element fault, and composite fault), outperforming
comparative methods such as EMD-CNN (86.59%) and EEMD-CNN (88.20%).The core
advantage of this method is that it addresses the incomplete decomposition problem of non-
stationary signals through VMD and combines it with CNN for precise fault feature extraction,
making it particularly suitable for industrial scenarios with strong impacts and multiple
interference sources, such as machine tools and rolling mills. However, VMD has high
computational complexity, requiring a balance between decomposition accuracy and real-time
performance.

4. Key Technology Comparison and Performance Analysis

4.1.

Signal preprocessing is a key step in improving the performance of rolling bearing fault
diagnosis. The feature enhancement effects and applicable scenarios of different preprocessing
techniques vary significantly. A detailed comparison is shown in Table 1:

Comparison of Preprocessing Methods

Table 1. Comparison of Different Preprocessing Techniques

Preprocessing method Core Principle Technical advantage | Limitations Applicable Scenarios
. . Non-stati
) ) ] High time-frequency | hon-statiohary
Differential Continuous resolution Computationally signals and scenarios
. . . ’ . . ith st i
Wavelet Transform First-order difference | effectively intensive and in‘tl\srfe:ezl?:rég(ggclieas
(DCWT) denoising Continuous | suppresses high- sensitive to the coal chemical
wavelet transform frequency noise, and choice of wavelet circulating fans and
preserves transient basis functions atng
features wind power
bearings)
The frequency Scenarios with stable
components are Only applicable to operating conditions
. Time-domain clear, the . and known fault
Fast Fourier ) ) steady signals, -
signal-Frequency computational characteristic

Transform(FFT)

domain signal

efficiency is high, and

unable to capture

frequencies (such as

Variational Mode
Decomposition(VMD)

. e . transient . .
conversion it is convenient to . laboratory simulation
o characteristics 4
extract characteristic tests or fixed-speed
frequencies. motors)
Adaptive . . Multi-component,
P High decomposition Parameter- P

decomposition into
IMF components,

accuracy, strong
anti-mode aliasing

sensitive, requires
optimization with

high-impact signal
scenarios (such as

mInMIZINg capability, suitable intelligent machine toql spm.dle
constrained variational . . . boxes, rolling mill
for nonlinear signals algorithms .
problems bearings)

Short-Time Fourier

Sliding window Fourier

Realize time-
frequency localized

The window size is

Mid-to-low frequency
signals, scenarios

Transform(STFT) transform, taking into analvsis with fixed, and there isa with relatively
account both time- mg]derate trade-off between concentrated fault
domain and frequency- computational time and frequency | characteristics (such
domain information P ) resolution. as low-speed rotating
complexity .
equipment)
4.2. Engineering Application Case Analysis

4.2.1. Fault Diagnosis of Coal Chemical Circulating Fan Bearings (COA-CNN)

Bie Fengfeng et al. took the rolling bearings of the circulating fan in a certain coal chemical
enterprise as the research object (fan model: unknown, speed 1481 r/min, sampling frequency
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12,800 Hz). Using a 1A314E three-axis acceleration sensor, vibration signals were collected
from the rear end (measuring point 1), front end (measuring point 2), and output end
(measuring point 3) of the fan to carry out engineering application verification. Operating
conditions and signal feature analysis: The horizontal vibration intensity at the drive end of Fan
No. 5 was 3.16 mm/s (close to the alarm threshold of 4.5 mm/s), and the vibration signal
showed a deterioration trend; the vibration intensity of Fan No. 7 was 16 mm/s (exceeding the
shutdown threshold of 11.2 mm/s), with no obvious low-frequency fault characteristics and
severe high-frequency noise interference. Diagnosis results: The COA-CNN model, through
DCWT preprocessing and parameter optimization, achieved a fault identification accuracy of
96.3% for Fans No. 5, 6, and 7, successfully diagnosing the rolling element fault of Fan No. 7,
which is 6.8 percentage points higher than the traditional CNN model (89.5%). This provides a
precise basis for equipment shutdown maintenance and prevents production losses caused by
the escalation of faults.

Chen Shuori and others focused on a certain type of CNC machine tool spindle box rolling
bearing (deep groove ball bearing, fault depth 1-2 mm, width 0.2-0.4 mm), collecting vibration
signals under five operating conditions (117,000 vibration points per condition) to carry out
engineering application verification: Interference and signal feature analysis: During machine
tool operation, there are multiple sources of interference such as gear meshing noise and
cutting vibrations, resulting in a low signal-to-noise ratio (0-2 dB), which easily masks fault
features. Diagnosis results: The VMD-CNN model, through KHA optimization of VMD
parameters, achieves effective signal decomposition and feature enhancement. For compound
faults (inner and outer rings), the diagnosis accuracy reaches 91.53%, an improvement of 5
percentage points compared to the traditional EMD-CNN method, enabling early warning of
machine tool bearing faults and reducing equipment maintenance costs.

5. Challenges and Future Development Directions

5.1. Current Challenges in Research

Although deep learning-based rolling bearing fault diagnosis technology has made significant
progress, it still faces the following challenges in industrial applications: Small sample and data
imbalance issues: In industrial scenarios, normal operation data of rolling bearings account for
over 90%, while fault data (especially early-stage and rare faults) are scarce. Existing deep
learning models largely rely on large-scale labeled data, and their generalization ability is
insufficient under small-sample conditions;Insufficient adaptability to dynamic operating
conditions: Real-time variations in industrial equipment speed and load cause frequency shifts
in fault features. Most existing models are trained under fixed conditions, resulting in a
10%~20% drop in diagnostic accuracy across different conditions, making it difficult to meet
dynamic operating requirements;Conflict between model lightweight and real-time
performance: Complex fusion models (such as FFT-CNN-Transformer) have parameters in the
millions to tens of millions and high computational complexity, making them difficult to deploy
on edge devices (e.g., sensor nodes, embedded systems), thus failing to meet industrial real-
time diagnostic needs;Poor model interpretability: Deep learning models are essentially "black-
box" structures, making it hard to explain the relationship between fault features and
diagnostic results, which hinders validation and trust by industrial experts and limits practical
engineering applications.

5.2. Future Development Directions

To address the above challenges and in consideration of industrial scenario requirements, the
future development of rolling bearing fault diagnosis technology can move in the following
directions:1. Development of few-shot learning techniques: By combining transfer learning
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(domain adaptation, fine-tuning of pre-trained models), generative adversarial networks
(GANSs), and other technologies, the problem of scarce fault data can be addressed. For instance,
GANSs can be used to generate simulated early fault data to expand the training dataset; pre-
trained models can learn general features on large-scale public datasets (such as CWRU) and
then be fine-tuned with a small amount of industrial data to improve generalization under few-
shot conditions.2. Optimization of robustness under dynamic operating conditions: Introduce
adaptive feature alignment techniques (e.g., dynamic time warping (DTW), attention
mechanisms) to achieve dynamic matching of fault features; develop variable-speed fault
diagnosis models based on instantaneous frequency estimation to accommodate fluctuations
in industrial equipment speed; integrate reinforcement learning techniques to allow models to
autonomously adjust parameters with changing operating conditions, enhancing dynamic
adaptability.3. Lightweight model design and edge deployment: Employ model compression
(pruning, quantization, knowledge distillation), lightweight network architectures (such as
MobileNet, EfficientNet), and hardware acceleration (FPGA, GPU) techniques to reduce model
parameter scale to below the million level while ensuring diagnostic accuracy, meeting edge
device deployment requirements. For example, knowledge distillation can transfer the
knowledge of complex fused models to lightweight models to achieve a balance between
accuracy and efficiency.4. Enhancement of model interpretability: Leverage attention
visualization (heatmaps), causal inference, and model distillation to reveal the contribution
mechanism of key fault features to diagnostic results. For example, heatmaps can intuitively
display the time-frequency regions that CNNs focus on, explaining the basis of fault
identification; causal inference can analyze the causal relationship between features and fault
types, improving model reliability.5. Construction of a multimodal fusion diagnostic system:
Integrate multi-source monitoring data such as vibration, temperature, oil analysis, and
acoustic emission to build multimodal deep learning models (e.g, multi-input CNN-
Transformer) for more comprehensive and reliable fault diagnosis. For instance, vibration
signals can be used to identify early faults, combined with temperature signals to assess fault
severity, thereby enhancing diagnostic comprehensiveness.

6. Conclusion

A review of six research articles on rolling bearing fault diagnosis shows that deep learning-
based intelligent diagnostic methods, particularly hybrid models that integrate convolutional
neural networks (CNN) with recurrent neural networks (such as GRU and LSTM) or attention
mechanisms (such as Transformers), have become the current mainstream trend. Compared
with traditional methods that rely on manual feature extraction, deep learning methods have
stronger adaptive feature extraction capabilities and higher diagnostic accuracy.Models such
as COA-CNN, FFT-CNN-Transformer, MSCNN-GRU, and 2D-CNN-GRU have demonstrated
excellent diagnostic performance under various experimental conditions, with accuracy rates
generally exceeding 95%, and some models achieving over 99% on public datasets. These
models effectively enhance robustness and generalization under complex conditions such as
noise interference, variable operating conditions, and small sample sizes by incorporating
optimization algorithms, multi-scale feature extraction, time-frequency fusion, and attention
mechanisms.Moreover, studies generally use the Case Western Reserve University (CWRU)
dataset for validation, with some also utilizing datasets from Jiangnan University, XJTU-SY, and
others to enhance the engineering applicability of the models. Overall, the future development
of intelligent fault diagnosis technology for rolling bearings will focus on integrating
spatiotemporal features, optimizing network structures, and improving model lightweight
performance and real-time capabilities.
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