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Abstract

In recent years, the booming automotive, home appliance, and construction industries
have driven a surge in market demand for cold-rolled steel strips. In response to the
“carbon neutrality” initiative, the steel industry has accelerated its green transformation.
The high added-value characteristics of cold-rolled strip steel highlight the importance
of quality control. However, its production process is complex, with intertwined
parameters. This paper aims to establish a model that can accurately reflect the
production mechanism. For Problem 1, this paper innovatively combines principal
component analysis (PCA) with the Pearson correlation coefficient to precisely screen
out the key parameters that have a decisive impact on hardness. For Problem 2, a
composite model based on random forest and BP neural network is constructed. This
model can capture the subtle changes in production data in real time and accurately
predict product quality, providing strong support for production decision-making. For
Problem 3, the advanced optimization tool of simulated annealing algorithm is
introduced. Through the intelligent optimization of complex process parameters,
improvements in production efficiency and product quality are achieved. For Problem 1,
our objective focused on identifying the key parameters significantly affecting the
hardness of cold-rolled steel strips. In the preliminary data processing stage, we
addressed missing values and outliers through linear interpolation and moving median
filtering, followed by data standardization using the Z-score method. This rigorous
preprocessing established a reliable data foundation for subsequent modeling. We then
employed two complementary statistical approaches for feature selection and model
development: PCA and Pearson correlation analysis. PCA identified critical variables
based on their contribution rates to variance, while Pearson correlation coefficients
quantitatively assessed the strength of linear relationships. These mutually validating
methodologies collectively established robust correlations between hardness and
twelve key process parameters. The final identified significant parameters include:
thickness, width, carbon content, silicon content, strip steel speed, heating furnace
temperature, soaking furnace temperature, slow cooling furnace temperature, over-
aging furnace temperature, rapid cooling furnace temperature, quenching temperature,
and temper mill tension. For Problem 2, which requires establishing a data-driven online
quality inspection model for steel strips and analyzing its performance, we first
introduced the random forest algorithm to significantly enhance model effectiveness
and computational efficiency. Through this approach, we extracted the most
representative feature subset, revealing that carbon content and rapid cooling furnace
temperature are the most critical factors in predicting steel strip product quality,
followed by physical dimensions, with silicon content and other heat treatment
parameters also exhibiting certain influence. Building upon this optimized feature
subset, we employed a backpropagation neural network to construct the online

144



Frontiers in Science and Engineering Volume 5 Issue 10, 2025
ISSN: 2710-0588

prediction model. Through hyperparameter tuning, we optimized the neural network
architecture configuration, determining that 12 hidden layers are optimal for the
acceleration/deceleration phases while 9 hidden layers achieve peak performance
during stable operation phases. Finally, we conducted efficiency optimization and
performance evaluation of the model, with results demonstrating excellent prediction
performance at 97.6733% accuracy, prediction errors within 5%, and overall
satisfactory prediction outcomes. For Problem 3, which requires establishing a
comprehensive and efficient solution for optimizing process parameters of steel strips,
simulated annealing algorithm was adopted in this study to globally search for optimal
solutions, given the difficulties in developing mechanistic models due to the complex
interdependencies among control parameters. The methodology encompasses
parameter initialization, key parameter identification, objective function formulation,
constraint handling, result validation, and model integration. Building upon the results
of Problem 1, we first identified critical parameters and construct the objective function,
followed by setting practical production constraints. The simulated annealing algorithm
performs global optimization while effectively addressing constraint limitations
through a penalty function mechanism. The optimal solution yields: strip speed of 201
m/s, heating furnace temperature at 710°C, soaking furnace temperature at 645°C, slow
cooling furnace temperature at 608°C, over-aging furnace temperature at 355°C, rapid
cooling furnace temperature at 67°C, quenching temperature at 45°C, and temper mill
tension at 2420 kN, achieving optimal mechanical properties under these conditions.
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backpropagation neural network algorithm, simulated annealing algorithm.

1. Introduction

With the rapid development of automotive, home appliance and construction industries, the
market demand for cold-rolled steel strips as a key fundamental material continues to rise.
Driven by the “carbon peaking” and “carbon neutrality” policies, the steel industry urgently
needs to improve product quality and production efficiency through green and intelligent
transformation. The mechanical properties (such as hardness) of cold-rolled steel strips
directly determine their application value, while the complex coupling characteristics of
continuous annealing process parameters make it difficult for traditional mechanism models to
precisely control the production process, resulting in significant product quality fluctuations
and high energy consumption, which have become core issues constraining industry
development.

This study aims to overcome the limitations of traditional models through data-driven
approaches to achieve precise hardness prediction and intelligent process parameter
optimization for cold-rolled steel strips. Specific objectives include: (1) screening process
parameters with significant effects on hardness to identify key production control points; (2)
establishing a real-time online detection model for dynamic product quality monitoring; (3)
developing a global optimization strategy to enhance product performance stability and
consistency. By integrating principal component analysis (PCA), random forest,
backpropagation neural networks, and simulated annealing algorithm, multi-model
collaborative optimization is innovatively achieved while maintaining a balance between
prediction accuracy and computational efficiency[1].

The significance of this study lies in providing a scientific and efficient intelligent solution for
cold-rolled steel strip production. For one thing, precise prediction and parameter optimization
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can significantly reduce rejection rates and energy consumption, enabling enterprises to
achieve cost reduction and efficiency improvement. For another, the model’s scalability
provides valuable reference for process optimization in other metal processing fields, while
aligning with Industry 4.0 and smart manufacturing trends to inject new momentum into the
green transformation of the steel industry.

2. Problem Analysis
2.1. Analysis of Problem 1

Data preprocessing

! }

Principal component Pearson correlation
analysis (PCA) coetficient screening

Result comparison

|

Identification of critical
parameters

Figure 1. Analysis flowchart of Problem 1

The core of Problem 1 is a correlation analysis issue concerning how to identify process
parameters that significantly affect the mechanical properties (hardness) of steel strips from
numerous variables. This identification will enable field operators to better understand key
control points in production processes, while allowing enterprises to adjust production
workflows by prioritizing monitoring and adjustment of these critical parameters, thereby
avoiding wasted time and resources on insignificant variables [2]. This approach contributes to
enhanced production efficiency and reduced manufacturing costs.

For Problem 1, we first integrated steel strip specifications, control parameters, and hardness
data, performed data cleaning to eliminate missing and abnormal values, and conducted
normalization to establish a solid foundation for subsequent model solutions. Subsequently,
both PCA and Pearson correlation coefficient models were employed to screen features
strongly correlated with hardness, with these two models serving as mutual validation.
Ultimately, the key parameters influencing steel strip hardness were definitively identified.

2.2. Analysis of Problem 2

Problem 2 requires a model capable of real-time quality prediction for steel strips, enabling
field operators to promptly adjust process parameters and ensure product quality compliance.
The random forest algorithm was employed to identify and select features with significant
predictive impact, effectively reducing model complexity while substantially mitigating
overfitting risks. Subsequently, a backpropagation neural network was adopted as the core
algorithm to establish the detection model. Through hyperparameter tuning, the neural
network architecture is optimized, further refining the training process. Results demonstrate
that flexibly adjusting network structures according to data characteristics proves an effective
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strategy for enhancing model performance. Finally, model efficiency optimization was
conducted and performance evaluation was performed on extended test sets to prevent
overfitting occurrences.

Original dataset
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Figure 2. Analysis flowchart of Problem 2
2.3. Analysis of Problem 3

Optimization objective determination
and key parameter identification

Design of objective function and
constraintss

Simulated annealing algorithm
solution

| y

Acceleration/deceleration phase Steady-state rolling phase

v

Result validation

h 4

Process parameter determination
and solution finalization

Figure 3. Analysis flowchart of Problem 3
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Problem 3 requires establishing a process parameter optimization solution for steel strips to
enhance mechanical properties (e.g., hardness), thereby improving product quality and
production efficiency. This involves employing machine learning methods to model
relationships between parameters and mechanical properties, followed by utilizing
optimization algorithms to identify optimal process parameter combinations.

An integrated optimization solution is proposed in this study to address the challenge of steel
strip process parameter optimization. Initially, key process parameters were identified through
analysis and experimentation, with an objective function established to evaluate optimization
effectiveness. Subsequently, comprehensive constraints were formulated based on actual
production requirements. The simulated annealing algorithm was employed to initiate from
random solutions and explore the extensive parameter space for optimal solutions, while
penalty functions handle constraints to ensure solution validity and practicality [3].
Optimization effectiveness was assessed through validation sets or actual production data,
comparing pre- and post-optimization quality and efficiency metrics, with iterative algorithm
adjustments for performance enhancement. Furthermore, strip specifications and performance
parameters were innovatively integrated in this study to construct a predictive model that
accurately forecasts process parameters while quantifying prediction deviations, thereby
providing scientific basis for precision adjustments and establishing foundations for intelligent
production control.

3. Model Assumptions

To facilitate problem understanding, the following model assumptions are established in this
study:

(1) Quantitative correlation assumption: The mechanical properties of steel strips exhibit
quantifiable mathematical relationships with their specifications and process parameters;

(2) Model validity assumption: The selected models can effectively fit the data, provide accurate
predictions, and maintain generalization capability;

(3) Parameter adjustability assumption: Process parameters are adjustable within certain
ranges to optimize strip performance;

(4) Environmental stability assumption: Environmental factors and equipment conditions
remain relatively stable during data collection or can be corrected through preprocessing;

(5) Error and uncertainty management: Prediction processes inherently contain errors and
uncertainties that require quantitative assessment and mitigation;

(6) Optimization objectives and constraints: The optimization aims to maximize strip
performance while considering production cost constraints.

4. Symbol descriptions

To enhance paper readability, Table 1 presents the symbols and their descriptions used in our
model development:
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Table 1. Symbol descriptions

Symbol Meaning Unit
y Hardness H
X; Variables involved, i=1, ...12
Xk The k-th data point
u Mean value
o Variance
Bi Regression coefficient, i=1, ...5
w Weight coefficient
Random number
R Correlation coefficient

5. Model Establishment and Solution

5.1.
5.1.1. Data Preprocessing

Pre-modeling Preparation

The linear interpolation technology was employed in this study to accurately estimate and fill
limited missing values. This method not only effectively smooths data sequences but also
precisely estimates reasonable values at missing points while maintaining overall data trends,
establishing a solid foundation for subsequent data analysis [4]. Within the MATLAB
environment, the interpl function is utilized to precisely calculate and interpolate
corresponding y-values for specified new x-value sets based on given x-y value pairs, thereby
achieving effective data filling and smoothing, with partial processing results shown in the

following figure.
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Figure 4. Linear interpolation processing results

The study subsequently applied the moving median method, sliding a fixed window across the
dataset to calculate the median within each window as new data points. Implemented in
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MATLAB, this approach demonstrates superior reliability compared to moving average
methods by remaining unaffected by extreme values, thereby effectively smoothing data and
significantly reducing outlier impacts, with notable processing results as shown in the following
figure.
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Figure 5. Moving median processing results

5000
o

Through the integrated application of linear interpolation technology and moving median
smoothing method, missing values and potential outliers in the dataset were successfully
addressed in this study. The results demonstrate that the processed dataset contains no
missing values while exhibiting significantly mitigated outlier effects, achieving marked
improvement in data quality.

5.1.2. Normality Test

The normal distribution, also known as Gaussian distribution, is characterized by its
symmetrical bell-shaped curve with standard deviation controlling its width. Normality tests
are commonly employed to evaluate whether data follows this distribution [5]. The Q-Q plot
method is adopted in this study, which visually examines data normality by comparing sample
quantiles with theoretical normal distribution quantiles.

First, the sample data was sorted in ascending order. Subsequently, theoretical quantiles were
calculated by determining the corresponding quantiles of the standard normal distribution for
each sorted data point, achieved through comparison between the sample’s cumulative
distribution function (CDF) and the standard normal CDF. Specifically, for a sample containing
n observations, the theoretical normal quantile for the i-th observation equals the quantile in

the standard normal distribution corresponding to a cumulative probability of % . (Note: The

subtraction of 0.5 and division by n implements linear interpolation to more accurately reflect
the sample distribution).

A scatter plot (Q-Q plot) is then generated with the sample quantiles (i.e., the sorted data values)
as the x-coordinates and their corresponding theoretical normal quantiles as the y-coordinates.
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Figure 6. Q-Q plot

The figure above demonstrates that when points on the Q-Q plot closely cluster around a
straight line, this indicates the sample data originates from a normal distribution.

5.2. Model Establishment and Solution for Problem 1
5.2.1. Modeling Analysis and Approach for Problem 1

Problem 1 requires identifying which parameters significantly influence the mechanical
properties of steel strips. The strip specification data, control process parameters, and hardness
performance indicators were systematically cleansed and organized in this study to ensure
data quality. Subsequently, PCA was employed for feature dimensionality reduction to
eliminate redundant information while preserving key variations. Pearson correlation analysis
was then applied to screen features highly correlated with hardness. Finally, the model was
optimized by incorporating significance test results, identifying parameters that substantially
affect the strip’s mechanical properties, thereby optimizing both product quality and
production efficiency in practical manufacturing.

5.2.2. Construction of PCA Model

Principal component analysis (PCA) is applied to reduce the dimensionality of the preprocessed
data.

PCA is a widely used dimensionality reduction technique for high-dimensional data,
algebraically characterized by transforming the original random vector's covariance matrix
into a diagonal matrix, and geometrically represented as converting the original coordinate
system into a new orthogonal coordinate system. This model transforms multiple variables into
a few composite variables (principal components) while maximally preserving original data
information, where these principal components capture most information from the original
variables, thereby achieving dimensionality reduction for multivariate data. [6]

(1) Data standardization

The numerical values of various influencing parameters and the hardness of the strip steel are
obtained through data preprocessing, and the principal component analysis (PCA) is used to
reduce the dimensionality of the data. Firstly, the preprocessed data was standardized to
eliminate the influence of dimensions and orders of magnitude, making it convenient for
comprehensive analysis. The n-th data points of the p-dimensional random vector
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X = (21 2,25, .ccz,) "

i=1,2,3,.n,n>p - p sample matrix was constructed, and the following standardization
transformation was carried out on the sample matrix:

Z,=2-% i=1,2,3,..p (1)

S

T
formed from the preprocessed data set are X = (xil,xiz,xi3,---,xip) ,

)\ 2
Where, = ; ’, 5,2 = Mthe standardized matrix Z is obtained.

= n—1

(2) Calculate the correlation coefficient matrix R from the standardized matrix Z

T
VA
R= [Tij]po:m (2)

Where,

2 (3)

Ty = n—1 ’]:1727"'ap

Calculate the covariance matrix of the standardized data. Each element of the covariance matrix
is the covariance between individual variables, which reflects the correlation between variables.
The formula for calculating the covariance is as follows:

covtt, vy = Ho = DG D) @)

(3) Principal component selection

The first few principal components are selected in this study based on eigenvalue magnitude,
as they contain the majority of the data’s information. The number of principal components is
determined by the cumulative contribution rate (i.e., the ratio of the sum of selected eigenvalues
to the total sum of all eigenvalues)[7].

Solve the characteristic equation of the sample correlation matrix R to obtain P eigenvalues,
then determine the number of principal components (m) ensuring the data utilization rate
exceeds 85%. For each characteristic equation solution:

|R_)\IP| =0
)\]—(j=1,2,...,m) (5)
Rb=M\;b

Obtain the unit eigenvector b]p.
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5.2.3. Construction of Pearson Correlation Coefficient Screening Model

The Pearson correlation coefficient, a statistical measure in statistics for quantifying the
strength and direction of linear relationships between two variables, reflects their linear
dependence by calculating the ratio of covariance to the product of their standard deviations.
Therefore, the Pearson correlation coefficient is employed in this study to preliminarily identify

Independent variables X: {X;,X,, - X;,} respectively represent: strip thickness, width, carbon
content, silicon content, strip speed, heating furnace temperature, soaking furnace temperature,
slow cooling furnace temperature, over-aging furnace temperature, rapid cooling furnace
temperature, quenching temperature, and temper mill tension; dependent variable Y denotes
strip hardness. The sample mean and sample variance are calculated using the following
formula:

Xv — Zi=1Xi 7 _ 2i=1Yi (6)

) =

n n

(X XY
n—1

CoOV(X,Y) = (7)

The Pearson correlation coefficient ranges from -1 to 1, indicating both the strength and
direction of linear relationships between variables. A value approaching 1 signifies a strong
positive correlation (concurrent increase), while a value approaching -1 indicates a strong
negative correlation (inverse relationship). Values near 0 suggest either no linear relationship
or an extremely weak one. The Pearson correlation coefficient is calculated as:

_ Cov(X,Y) 8
Tey = Sx'Sy ( )

5.2.4. Model Solution Results

After inputting the data into the PCA model, MATLAB was utilized to solve for each eigenvalue
and its corresponding contribution rate, as presented in the following table.

Table 2. Contribution rate results

Name Eigenvalue | Contribution rate | Cumulative contribution rate
Carbon content 3.8561 0.2966 0.2966
Silicon content 2.2324 0.1717 0.4683
Heating furnace temperature 1.6641 0.1280 0.5964
Rapid cooling furnace temperature 1.2170 0.0936 0.6900
Strip steel width 1.1016 0.0847 0.7747
Strip steel thickness 0.9244 0.0711 0.8458
Temper mill tension 0.5795 0.0446 0.8904
Soaking furnace temperature 0.5564 0.0428 0.9332
Strip steel speed 0.4232 0.0326 0.9658
Over-aging furnace temperature 0.1961 0.0151 0.9808
Quenching furnace temperature 0.1681 0.0129 0.9938
Slow cooling furnace temperature 0.0480 0.0037 0.9975
Strip steel hardness 0.0329 0.0025 1.0000
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Select carbon content, silicon content, heating furnace temperature, rapid cooling furnace
temperature, strip steel width, strip steel thickness, temper mill tension, soaking furnace
temperature, strip steel speed, over-aging furnace temperature, quenching furnace
temperature, and slow cooling furnace temperature as the principal components from the
above table.

To make the results more intuitive, a heatmap of the Pearson correlation coefficients is plotted
using MATLAB. The visualization results are as follows:

Correlation coefficient
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Figure 7. Heatmap of Pearson correlation coefficient

From the figure, it can be seen that the hardness of the cold-rolled strip steel gradually increases
with the increase of the strip steel thickness, strip steel width, carbon content, strip steel speed,
and quenching furnace temperature, which belongs to a positive correlation. The hardness of
the cold-rolled strip steel gradually decreases with the increase of the silicon content, heating
furnace temperature, soaking furnace temperature, slow cooling furnace temperature, over-
aging furnace temperature, rapid cooling furnace temperature, and temper mill tension, which
is a negative correlation.

Through comparative analysis, the results obtained from the PCA model are the same as those
obtained from the above-mentioned Pearson correlation coefficient screening model. This
further verifies the accuracy of the above conclusions and the high goodness of fit of the model.
Therefore, it is determined that the strip steel thickness, strip steel width, carbon content,
silicon content, strip steel speed, heating furnace temperature, soaking furnace temperature,
slow cooling furnace temperature, over-aging furnace temperature, rapid cooling furnace
temperature, quenching temperature, and temper mill tension have a significant impact on the
mechanical properties of the strip steel products.

5.3. Model Establishment and Solution for Problem 2

5.3.1. Modeling Analysis and Approach for Problem 2

Rigorous and efficient procedures were adopted in this study to ensure precision, robustness,
and real-time capability when constructing the online steel strip quality detection model. First,
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random forest optimization was employed for feature selection to identify critical features
while eliminating redundancy, thereby reducing model complexity and preventing overfitting.
Subsequently, a meticulously designed backpropagation neural network served as the
predictive model, with its prediction accuracy and generalization capability enhanced through
optimized network architecture and hyperparameter tuning. Robustness is further
strengthened via sensitivity testing and targeted optimization to ensure model adaptability in
complex production environments. Finally, comprehensive computational efficiency
optimization guaranteed real-time responsiveness, meeting production monitoring
requirements while enhancing industrial applicability and competitiveness.

5.3.2. Data Standardization Processing

During data analysis, different features typically exhibit varying dimensions, which introduces
scale disparities among the data. To eliminate such discrepancies, data standardization is
required to ensure uniform scaling. Data standardization refers to proportionally scaling data
to fall within a specific smaller range, thereby removing unit constraints and transforming them
into dimensionless pure numerical values, enabling comparison and weighting of indicators
with different units or magnitudes. After comparative analysis, the Z-Score standardization
method is adopted for data standardization.

Z-Score standardization is a data standardization method used to transform data into a
distribution with a mean value of 0 and a standard deviation of 1. This method makes the data
distribution exhibit the characteristics of a standard normal distribution, so as to conduct
statistical analysis, hypothesis testing, and build some machine learning models [8]. The Z-
Score standardization formula is as follows:

X _
XZ,SCO?"@ — —/1’ (9)
Std o

The presentation of partial standardization results of the characteristic variables is shown in
the following table:

Table 3. Standardization results

Strip steel Strip Carbon Silicon Strip Soaking furnace Slow cooling
. steel steel furnace
thickness . content content temperature
width speed temperature
1 -0.4410 -0.8596 1.4869 -0.3954 -1.4423 1.3392 1.7248
2 -0.8218- -0.9374 -0.5202 -0.7695 -1.4423 2.0588 1.7123
3 -0.9097 2.1772 -0.6992 -1.1437 -0.7468 -0.3942 1.0884
4 -0.7046 -0.2366 0.5181 2.2233 0.8011 0.0801 -0.4214
5 0.8183 1.4764 -0.1084 -1.1437 -0.0962 -0.4432 1.0635
6 -0.7046 -0.1588 -0.8066 -1.1437 -0.2982 0.0964 -0.5960
7 -1.4075 2.3330 -0.5202 1.5178 1.4742 -0.1489 0.2524
8 -0.4703 -0.0809 0.2317 -0.3954 -2.9679 -0.4432 0.1401

Subsequently, we built a decision tree based on the new sample subset and feature subset.
Finally, multiple decision trees were successively constructed, laying the groundwork for the
implementation of the random forest algorithm.
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5.3.3. Establishment and Solution of the Quality Prediction Model for Strip Steel
Products based on Random Forest

The random forest algorithm is an ensemble learning method widely used in machine learning,
which ingeniously utilizes multiple decision trees to enhance the prediction ability. The core
idea of this method lies in constructing a “forest” in a random way. This forest is composed of
numerous independent decision trees. When faced with new sample data, each decision tree in
the forest will make predictions independently and determine the category to which the sample
belongs. Subsequently, through a voting mechanism, the prediction results of the majority of
decision trees are taken as the final classification decision, thus achieving the accurate
classification of new samples [9]. In the case of regression problems, the random forest adopts
another strategy, that is, it outputs the average value of the prediction results of all decision
trees and takes this as the final predicted value. The construction process of the random forest
is shown in the following figure:

Original
dataset
I ] I
Training Training Training
set 1 set 2 setn

I [

Randomly select K features from each training set

Decision
tree m

Decision
tree 2

Decision
tree 1

Randomly select K features from each training set

v

Final
decision

Figure 8. Flowchart of random forest construction

(1) Calculation of feature importance

The calculation steps for the importance of the input feature X are as follows: (1) For each
decision tree, a training data is obtained by means of repeated sampling. At this time,
approximately one-third of the data is not utilized, and this part of the data is called out-of-bag
data (OOB). Then, calculate the out-of-bag data error (ERROOB1); (2) Add random noise to the
input feature X in all out-of-bag data samples, and calculate the error again (ERROOB2); (3)
Suppose there are a total of N decision trees in the random forest, then the calculation method
for the importance impX of the input feature X is as follows:

impx = (ERRoo2 — ERRoop1) /N (10)
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Here, impX reflects the importance of input features. After introducing random noise, if the out-
of-bag (OOB) accuracy decreases significantly, causing ERROOB, to increase and consequently
leading to a larger impX value, this indicates the feature has substantial influence on prediction
results, i.e., higher importance. The results are shown in the following figure:

Feature importance 2, AEIMAQAR

0.18

0.16

0.14

0.12

0.1

0.08 +

0.06

Importance score

0.04

0.02

1 2 3 4 5 6 7 8 9 10 11 12

Feature

Figure 9. Importance scores of feature variables
The results are shown in the following table:

Table 4. Importance scores of partial feature variables

Feature Strip steel Strip Carbon silicon Strip Heating Slow cooling Rapid cooling Quenching Tem_per
. . steel steel furnace furnace furnace furnace mill
Variable thickness . content content .
width speed temperature temperature temperature temperature tension
Importance 0.07923 0.07217 0.16431 0.01846 0.04962 0.06437 0.06188 0.165128 0.06180 0.06346
score

Analysis of Figure 9 and Table 4 reveals that carbon content and rapid cooling furnace
temperature are identified as the most critical features in the steel strip quality prediction
model, exerting significant influence on prediction outcomes. While the strip’s physical
dimensions (thickness and width) remain important though comparatively less impactful,
silicon content and other heat treatment temperature parameters also contribute measurable
importance, collectively constituting the model’s key predictive factors.

5.3.4. Construction of Quality Prediction Model for Steel Strips based on BP Neural
Network

The backpropagation (BP) algorithm represents the most widely adopted neural network
training methodology, employing gradient descent to implement error backpropagation
computations. During neural network model training, signals propagate forward sequentially
from the input layer through multiple hidden layers to the output layer. When discrepancies
exist between predicted and expected outputs, error signals propagate backward along the
reverse transmission path, progressively adjusting inter-neuronal weights and thresholds
through iterative cycles until the error meets predefined convergence criteria [10]. The BP
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neural network constitutes a highly nonlinear input-output mapping. That is expressed as
follows.

F:R,, —» R,)Y=f(x) (11)

For sample set inputs xi(Rm) and outputs yi(Rn), it is mathematically established that there
exists an objective mapping g, makingg(z;) =¥,,i=1,2,...,p

The current objective is to determine a mapping f that represents the optimal least squares
approximation of g. Hecht-Nielsen’s proof of Kolmogorov’'s theorem states: For any given
continuous function f:U — R (where U denotes the closed unit interval [0,1]), f can be precisely

implemented by a 3-layer feedforward network. This network’s first layer (input layer)
contains m processing units, the intermediate layer comprises 2m+1 processing units, and the
third layer has n processing units. The topology of this multilayer BP neural network is
illustrated in the following figure.

Input layer Hidden layer Output layer
X, \ i

Figure 10. Topological structure of multilayer BP neural network
5.3.5. Data Standardization

Data exportation and meticulous data cleaning were conducted in this study, including effective
handling of outliers and missing points, along with appropriate data denoising techniques to
reduce interference from noise in analytical results. Subsequently, to more precisely analyze
the steel strip production process, each coil’s operation cycle was divided into acceleration-
deceleration and stable rolling phases, with random forest algorithm applied separately in both
phases to compute input feature importance. Through this procedure, the study successfully
identified optimal input features post data selection, providing robust support for subsequent
model training. Finally, to ensure data consistency and comparability, max-min normalization
was implemented on cleaned data using a specific formula to transform values into the [0,1]
interval, establishing a solid foundation for follow-up analysis. The formula is as follows:

158



Frontiers in Science and Engineering Volume 5 Issue 10, 2025
ISSN: 2710-0588

z, — min (z;)

X, =
"7 max(z,) —min(z;)

(12)

where max(xy) and min(xy) represent the maximum and minimum values in the data

sequence respectively, with ** denoting the k-th data point. Subsequently, all data undergo
dimensionless processing using the standardization method previously employed in the
aforementioned problem.

5.3.6. BP Network Training Procedure:

Step 1: Initialize all weights with small random numbers from a uniform distribution, e.g.,
W[0]=[-0.2,0.2].

Step 2: Apply an input pattern from training pair [x(k), d(k)] to the network. Compute the actual
output y(k) at the output layer.

Calculate the output layer error:

e;(k) =d; (k) —y; (k) 6;(k) =e; (k) f'[S; (k)] (13)

Where m denotes the number of output layer nodes.
Calculate the hidden layer error:

a®) =2 Wu®b®) s ] (14)

Where h represents a node in a given hidden layer; H denotes the total number of nodes in this
hidden layer, and | indicates all nodes in the subsequent layer connected to hidden node h.

Step 3: Update all network weights.
W,,(k +1) =W,, (k) +nb,(k)y, (k) (15)

Where W,, denotes the weight from hidden layer node p (or input p) to node qg; 7represents
the output of node p (or input to node q), and 1 indicates the training rate (typically set between
0.01-1).

Step 4: Repeat the process from Step 2.

The BP neural network algorithm flowchart is presented below:
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Figure 11. Flowchart of BP neural network algorithm

Based on the aforementioned algorithm flowchart, a three-layer BP neural network program
was developed by using MATLAB. The implementation first involved data collection, cleaning,
normalization, and partitioning into training and testing sets. Subsequently, a network
architecture was designed comprising an input layer, one hidden layer (10 neurons), and an
output layer, with random initialization of weights and biases. During training, data underwent
forward propagation to compute outputs, followed by backward propagation of errors between
outputs and true labels to iteratively adjust weights and biases until meeting predefined
training criteria. Upon training completion, model performance was evaluated using the test
set to ensure robust generalization capability. Finally, the trained model was deployed for
practical applications to execute prediction or classification tasks.

The training diagram of the neural network algorithm is as follows:
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Figure 12. The training diagram

The first 800 data groups were allocated as the training set, while the remaining 200 groups
served as the validation set. The trained network was then applied to the validation set to verify
the regression prediction results, as illustrated in the following figure:
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50

100

150
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200

Figure 13. Regression validation results

While deviations exist between sample values and validation values in the figure, their overall
variation trends demonstrate consistent alignment, confirming the neural network model’s
successful training via the sample set. Furthermore, the high congruence between BP neural
network predictions and actual measurements, as evidenced in the comparison chart, enables
reliable real-time online prediction for various variables.

5.3.7. Neural Network Hyperparameter Determination and Model Performance
Evaluation

In constructing and optimizing the neural network architecture for steel strip hardness
prediction, the selection of hyperparameters-particularly the number of hidden layers and
neurons per layer-significantly influences the model’s learning capacity, representational
capability, and ultimate predictive performance. To identify the optimal network structure, the
control variable method was employed to adjust network configurations separately for
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acceleration-deceleration and stable rolling phase data [11]. The final determined network
architecture for the acceleration-deceleration phase is 12-12-1-1, while the stable rolling phase
adopts a simplified 12-9-1-1 structure, as illustrated below:

[ ]
@ )
=, ==
[ ]
) +
7

, Output

Figure 14. Network architecture

To validate the effectiveness of the network architecture, the model’s performance on the test
set was evaluated in this study, and the evaluation yielded the quantitative metrics shown in
Table 5.

Table 5. Quantitative metrics including MSE and MAE

SSE MAE MSE RMSE MAPE Correlation coefficient Prediction
R accuracy
133775.9241 | 14.7534 | 4459197 | 21.1168 | 2.5429% 0.54362 97.4571%

The table reveals that while the acceleration-deceleration phase employs a more complex
network architecture, the stable rolling phase’s structure demonstrates superior performance
across MSE, MAE, and other metrics while maintaining 97.4571% prediction accuracy. This
indicates that flexibly adjusting network configurations according to data characteristics
constitutes an effective strategy for enhancing model performance.

5.3.8. Model Efficiency Optimization

In machine learning model construction, model efficiency optimization and result analysis
constitute critical steps for enhancing performance and reliability. Specifically, to more
accurately evaluate model performance, the test set was expanded from the original 200 data
groups to 300 groups. This adjustment aimed to better simulate application scenarios by
increasing sample diversity, thereby effectively preventing model overfitting.

Subsequently, the expanded test set was utilized to conduct comprehensive performance
evaluation, calculating and recording multiple quantitative metrics including SSE. Comparative
analysis of pre- and post-optimization metric variations provided intuitive understanding of
model performance improvements.
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Table 6. Optimized quantitative metrics including MSE and MAE
SSE MAE MSE RMSE MAPE | Correlation coefficient R | Prediction accuracy
67171.6014 | 13.6349 | 335.858 | 18.3264 | 2.3267% 0.55244 97.6733%

Following optimization, the model’s performance variations were compared across three
datasets, with the MSE performance variation graph presented here.
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Figure 15. MSE performance variation graph

The results demonstrate that the training set MSE progressively decreases with increasing
iterations, indicating continuous model learning and predictive capability improvement. More
critically, the validation set MSE reaches its minimum value of 0.054816 at the 4th iteration--
this significant reduction confirms the effectiveness of our optimization strategy and indicates
the model’s attainment of near-optimal parameter configuration at this stage.

5.4. Model Establishment and Solution for Problem 3
5.4.1. Modeling Analysis and Approach for Problem 3

A comprehensive optimization framework was developed in this study to address process
parameter optimization challenges in steel strip production, a simulated annealing algorithm
was employed, which systematically incorporates: (1) parameter initialization, (2) key
parameter identification, (3) objective function formulation, (4) constraint handling, (5) result
validation, and (6) iterative optimization. We first established critical parameters and
constructed corresponding objective functions, followed by implementing practical production
constraints. The global optimization capability of the simulated annealing algorithm was
leveraged to identify optimal solutions while integrating penalty functions for effective
constraint management [12]. Optimization performance was rigorously evaluated through
validation datasets, with subsequent iterative refinement of algorithm parameters.
Furthermore, an advanced predictive model synergizing strip dimensional specifications and
mechanical properties was developed, enabling high-precision process parameter prediction
and dynamic adjustment, thereby establishing a robust foundation for intelligent production
control systems.
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5.4.2. Key Parameter Identification and Impact Analysis

Initially, an in-depth examination of multiple critical process parameters affecting steel strip
product quality were conducted. Through rigorous experimental validation and statistical
analysis, the specific mechanisms by which these parameters influence product quality were
elucidated, establishing a solid foundation for subsequent optimization efforts.

Since the problem explicitly specifies strip hardness as the performance metric, the developed
solution for steel strip process parameter optimization aims to thoroughly analyze and
precisely control hardness performance to achieve maximum strip hardness values.

From Problem 1, principal component analysis and Pearson coefficients have identified 12 key
parameters, categorized into strip specification data and control process parameters. For
Problem 3, which requires setting process parameters for strip products, we assumed
consistent strip specifications while exclusively considering the influence of control process
parameters on hardness.

Table 2 from Problem 1 presents the correlation relationships between control process
parameters and strip hardness.

The specific impacts of control process parameters on strip hardness are as follows:

Table 7. Correlation relationships of selected parameters

Parameter Strip Strip Carbon Silicon Strip Heating Slow cooling | Rapid cooling Quenching
name steel steel content | content steel furnace furnace furnace furnace
thickness width speed temperature | temperature temperature temperature
Relevance 0.04976 | 0.005457 | 0.3553 - 0.1609 -0.1276 -0.3122 0.3985 0.2815
0.00355

5.4.3. Objective Function and Constraint Formulation

With the optimization objective explicitly defined as hardness maximization, the objective
function was meticulously constructed to serve as the key mechanical performance metric for
evaluating optimization effectiveness. Simultaneously, based on actual production conditions,
comprehensive constraint conditions were specified, including permissible ranges for strip
speed, temperature limits for various furnaces, and tension requirements for the temper mill -
ensuring the optimization process aligns with practical production requirements. The objective
function for maximizing steel strip hardness is formulated as follows:

Yy=Uu+pPr-x1+ Py x4+ Pgxg+w-g(xy, -, xXm) (16)

Where p represents the hardness mean; 3; ~5 denotes regression coefficients; g(xq, :**, X,y )is
a truncated linear function of transformed remaining variables and w indicates the weight
coefficient.

Constraint conditions:

{ ﬁi >0
0<T<1500
T represents the temperature.

5.4.4. Optimization of the Simulated Annealing Algorithm

The simulated annealing algorithm (abbreviated as SA) is a general optimization algorithm
based on probability, which is inspired by the annealing process in solid-state physics. The
simulated annealing algorithm solves optimization problems by simulating the phenomenon
that the temperature of a solid substance gradually decreases and its internal energy gradually
decreases during the annealing process. During the annealing process, the particles inside the
solid become disordered as the temperature rises, and the internal energy increases; while
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when it cools slowly, the particles gradually become ordered, reaching an equilibrium state at
each temperature, and finally reaching the ground state at room temperature, with the internal
energy reduced to the minimum. The simulated annealing algorithm combines this physical
process with the search in the solution space of combinatorial optimization problems. By means
of random search and probabilistically accepting new solutions, it avoids getting trapped in
local optimal solutions, so as to find the global optimal solution or an approximate optimal
solution [13].

The specific process is shown in the following figure:

| Start |

| Set control parameters and initial solution

Termination
criteria met?

H| Generate random solution |%

| Solve function f(x) |

| Mutation |

| Modified Metropolis selection criterion |

Terminate current
iteration?

Update temperature and savecurrent best
solution
| Output optimal solution H

2

| End |

Figure 16. Flowchart of simulated annealing algorithm

The simulated annealing was employed as the optimization tool, where properly initialized
algorithm parameters (including initial temperature, cooling rate, iteration count, and
acceptance probability function) enable the algorithm to commence from randomly generated
initial solutions. Leveraging its global search capability and local optimum escape mechanism
[14], the algorithm explores the extensive parameter space to identify globally optimal or near-
optimal solutions. During optimization, constraint conditions are effectively handled via
penalty function methods, ensuring generated solutions simultaneously satisfy optimization
objectives and practical production constraints.
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(1) Initialization
Set initial temperature T,, temperature decay rate, control parameter T, temperature decay

function, terminal condition, and Markov chain length. Designate initial solution x, and
corresponding objective function f(xy).

Construct solution space € representing all possible sets of m elements selected from {1, --- N},
expressed as:

&= {X = {xl,---,xm}|1 <x; <N,x; # xj,fori,j = 1,---,m} (17)

The initial solution may be selected asX, = {1, [%] ,+++, N}. All state transitions are performed

within the solution space.
(2) Iteration process
Step 1: At parameter T = T(k), conduct Ly trial searches as follows: First, generate a random

vector Z, based on the properties of current X, yielding a new trial point X' in the
neighborhood of the current solution.

P Xy + Zy, For the continous variable X 18
k= { X(k+m), For the discrete variable X (18)

Here, X represents the discrete value sequence, and k denotes the discrete position of the
current solution.

Subsequently, generate a uniformly distributed random number 6 € (0,1) and compute the

transition probability P corresponding to the Metropolis acceptance criterion at the given
iteration point Xk and temperature Tk.

1 ,when f(X;") < f(Xy)

P =1 exp (f (X"‘)T‘k f (X")>,whenf<xk') > (X

(19)

If 6 < P, accept the new solutionXy = Xy, f(Xy) = f(X\); otherwise, retain the current solution.

If trial searches conducted are fewer than Lk, reinitialize the process; otherwise, proceed to
Step 2.

Step 2: If termination criteria are satisfied, the algorithm concludes with the current solution
as the global optimum; otherwise, continue to Step 3.

Step 3: Generate new temperature control parameter Tk+1 and Markov chain length Lk+1 using
the specified temperature decay function, then return to Step 1 for equilibrium point
optimization at the next temperature level.

The simulated annealing results are as follows:

Table 8. The simulated annealing results

Parameter !
B1 -0.008805
B2 0.000213
B3 0.01685
B4 -0.2280
B5 0.1975
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5.4.5. Model Integration and Process Parameter Prediction

Building upon the model analysis from Problem 2, this paper proposes a framework
establishing relational models between steel strip process parameters and strip
specifications/performance parameters. The model takes strip specification-performance
indicators as inputs and process parameters as outputs, enabling high-precision predictions
and similarity quantification analysis to provide scientific basis for refined parameter
adjustments [15]. This integration not only enhances the optimization framework’s
comprehensiveness but also establishes foundations for more intelligent steel strip production
control. The optimization results are presented as follows:

Table 9. Pre- vs. post-optimization comparison

Strip Heating Soaking Slow cooling Over-aging Rapid cooling Quenching Temper
Comparison steel furnace furnace furnace furnace furnace furnace mill
speed | temperature | temperature | temperature temperature temperature temperature | tension
Pre- 203 710 653 607 352 64 43 2439
optimization
Post- 201 710 645 608 355 67 45 2420
optimization

5.4.6. Sensitivity Analysis

Sensitivity analysis is a method for studying and analyzing the sensitivity of the state or output
change of a model (or system) to the changes in system parameters or surrounding conditions.
In the simulated annealing algorithm, conducting sensitivity analysis can help understand the
influence of different parameters on the algorithm’s performance, thereby guiding how to
select and adjust these parameters. For example, by analyzing the influence of parameters such
as the initial value of the control parameter, the attenuation factor, and the number of iterations
at each temperature value on the algorithm’s convergence speed and the quality of the solution,
the optimal parameter settings can be determined. In addition, sensitivity analysis can also help
evaluate the stability and robustness of the algorithm, that is, whether the performance of the
algorithm will be significantly affected when the parameters change within a certain range.

In practical applications, whether it is necessary to conduct sensitivity analysis on the
simulated annealing algorithm depends on the requirements of the specific problem and the
complexity of the algorithm. If the problem has high requirements for the quality of the solution,
or the performance of the algorithm is greatly affected by parameters, then conducting
sensitivity analysis becomes particularly important. Through sensitivity analysis, the optimal
parameter settings can be found, thereby improving the execution efficiency and convergence
accuracy of the algorithm.

6. Analysis of the Advantages and Disadvantages of the Model

6.1. Advantages of the Model
6.1.1. Improved Accuracy through Multi-model Integration

By combining multiple methods such as PCA, Pearson correlation coefficient, random forest, BP
neural network, and simulated annealing algorithm, the model can comprehensively and
accurately capture the complex relationships in the production process, improving the
accuracy of prediction and optimization.

6.1.2. Meticulous Data Pre-processing

The model uses linear interpolation and the moving median method to remove outliers and
conducts dimensionless processing, ensuring the data quality and providing a reliable
foundation for model construction.
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6.1.3. Real-time Performance and High Efficiency

The BP neural network model can quickly respond to changes in production data, enabling real-
time prediction of product quality. Meanwhile, the simulated annealing algorithm
demonstrates high-efficiency global search ability in complex parameter optimization.

6.1.4. Intelligent Feature Selection and Optimization

Feature selection is carried out using the random forest, which automatically extracts the
features that have the greatest impact on the prediction results. This reduces the complexity of
the model and improves the computational efficiency. The simulated annealing algorithm
achieves intelligent optimization of process parameters, enhancing production efficiency and
product quality.

6.1.5. Strong Reliability

Potential error sources are identified and reduced through sensitivity analysis, enhancing the
stability and reliability of the model. At the same time, the evaluation of the optimization effect
in combination with the validation set ensures the applicability of the model in actual
production.

6.2. Disadvantages of the Model
6.2.1. High Model Complexity

The integration of multiple algorithms and technologies makes the model construction and
debugging process relatively complex, requiring a high technical threshold and professional
knowledge.

6.2.2. High Consumption of Computing Resources

Especially, the BP neural network and the simulated annealing algorithm require a large
amount of computing resources during the training and optimization processes, which may not
be suitable for production environments of all scales.

6.2.3. Insufficiency in Data Timeliness and Real-time Performance

The performance of the model highly depends on the integrity and quality of the data. Data
missing or abnormalities will significantly affect the model. In this paper, the quality data of
cold-rolled products are mostly integrated from historical data and are not updated in real time,
which limits the ability of online performance prediction. Future research will explore methods
for real-time data integration and online prediction.

7. Optimization and Promotion of the Model

7.1. Optimization of the Model
7.1.1. Enhancement of Model Generalization Ability

Although advanced algorithms such as random forest and BP neural network are used in this
paper for feature selection and model construction, the model may still be restricted by the
distribution of training data. As a result, when encountering new samples that differ
significantly from the training data, the prediction performance may decline. Especially in a
production environment with complex and changeable process parameters, the generalization
ability of the model needs to be further improved to handle various unknown situations.
Therefore, it is necessary to introduce more training data and adopt strategies such as
regularization techniques and dropout to prevent model over-fitting and improve the model’s
generalization ability. In addition, ensemble learning methods (such as Stacking and Blending)
can be considered to combine the prediction results of multiple models, further enhancing the
model’s stability and accuracy.
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7.1.2. Optimization of Computational Efficiency and Real-time Performance

Although the BP neural network used in this paper has strong learning ability, its computational
complexity is relatively high. Especially when the network structure is complex with a large
number of layers and neurons, the model training and inference speed may be slow, making it
difficult to meet the requirements of production lines with high real-time performance.
Therefore, pruning and quantization processing of the BP neural network are required to
reduce model parameters and computational volume and improve the inference speed.
Distributed computing frameworks and hardware acceleration technologies (such as GPUs and
TPUs) can be utilized to accelerate the model training and inference processes. Convolutional
neural networks (CNNs) can be designed and used to replace fully-connected layers to reduce
computational complexity.

7.1.3. Automated Hyperparameter Tuning

Hyperparameter tuning in this paper is a crucial step to enhance model performance. However,
the current tuning process often relies on manual experience and trial-and-error methods,
which may lead to subjective tuning results and may not necessarily find the global optimal
solution. Therefore, it is necessary to use intelligent optimization algorithms such as Bayesian
optimization and genetic algorithms for automatic hyperparameter tuning to reduce manual
intervention and subjectivity. A reasonable hyperparameter search space and evaluation
strategy should be designed to ensure the effectiveness and efficiency of the tuning process.

7.1.4. Improving Model Robustness

Since outliers and noise in the data in this paper have a significant impact on model training,
although data cleaning and pre-processing have been carried out, the model may still be
sensitive to some undetected outliers, leading to deviations in prediction results. Therefore,
more powerful outlier detection and noise suppression techniques are needed to improve the
model’s robustness.

7.1.5. Enhancing Model Interpretability

Although the interpretability of model results can be improved through feature importance
evaluation in this paper, black-box models such as the BP neural network are still difficult to
fully explain in terms of their internal mechanisms, which limits operators’ understanding and
optimization of the model decision-making process. Therefore, more interpretable models such
as decision trees should be used as baseline models and combined with the BP neural network
to improve overall interpretability through model integration. Additionally, interpretability
tools such as SHAP values and LIME should be introduced for post-processing analysis of the
model to clarify the influence degree and direction of features on prediction results.

7.2. Promotion and Application of the Model
7.2.1. Cross-industry Application

The methods of using machine learning for correlation analysis, feature selection, model
construction, and optimization in this paper have universal applicability. Therefore, this model
can be extended to other metal processing, material manufacturing, and industrial production
fields, such as the production optimization of products like aluminum alloys, copper materials,
and stainless steel. By adjusting the model input parameters and objective functions,
customized optimization can be carried out according to different material properties and
production requirements, thus improving the overall production efficiency and product quality.

7.2.2. Integration into Intelligent Production Lines

With the development of Industry 4.0 and intelligent manufacturing, the requirements for the
intelligence and automation levels of production lines are increasingly higher. This model can
be seamlessly integrated into existing intelligent production lines and serve as a key component
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of the production control system. By monitoring process parameters and product quality data
in real time, the model can automatically adjust production parameters to achieve intelligent
control of the production process. This not only reduces human intervention and errors but
also significantly improves production efficiency and product consistency.

7.2.3. Training and Education

The promotion and application of this model also involve the training and education of
production personnel. Through organizing professional training courses, compiling operation
manuals, and sharing successful cases, etc., it can help production personnel better understand
and apply this model. This can not only enhance their professional skills and knowledge level
but also boost their awareness and confidence in intelligent production.

8. Conclusion

This study developed an integrated intelligent prediction and optimization framework for cold-
rolled strip steel hardness by combining PCA, Pearson correlation, random forest, BP neural
network, and simulated annealing algorithms. The results show that key process parameters-
including carbon content, rapid cooling furnace temperature, and strip dimensions-exert
significant influence on hardness. The hybrid model achieves a high prediction accuracy of
97.67%, demonstrating strong generalization and practical applicability. Furthermore,
simulated annealing effectively identifies optimal parameter configurations that enhance
product quality and production efficiency. This multi-model collaborative approach not only
provides a robust solution for the steel industry’s intelligent quality control but also contributes
to reducing energy consumption and supporting green manufacturing.
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