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Abstract 
In recent years, the booming automotive, home appliance, and construction industries 
have driven a surge in market demand for cold-rolled steel strips. In response to the 
“carbon neutrality” initiative, the steel industry has accelerated its green transformation. 
The high added-value characteristics of cold-rolled strip steel highlight the importance 
of quality control. However, its production process is complex, with intertwined 
parameters. This paper aims to establish a model that can accurately reflect the 
production mechanism. For Problem 1, this paper innovatively combines principal 
component analysis (PCA) with the Pearson correlation coefficient to precisely screen 
out the key parameters that have a decisive impact on hardness. For Problem 2, a 
composite model based on random forest and BP neural network is constructed. This 
model can capture the subtle changes in production data in real time and accurately 
predict product quality, providing strong support for production decision-making. For 
Problem 3, the advanced optimization tool of simulated annealing algorithm is 
introduced. Through the intelligent optimization of complex process parameters, 
improvements in production efficiency and product quality are achieved. For Problem 1, 
our objective focused on identifying the key parameters significantly affecting the 
hardness of cold-rolled steel strips. In the preliminary data processing stage, we 
addressed missing values and outliers through linear interpolation and moving median 
filtering, followed by data standardization using the Z-score method. This rigorous 
preprocessing established a reliable data foundation for subsequent modeling. We then 
employed two complementary statistical approaches for feature selection and model 
development: PCA and Pearson correlation analysis. PCA identified critical variables 
based on their contribution rates to variance, while Pearson correlation coefficients 
quantitatively assessed the strength of linear relationships. These mutually validating 
methodologies collectively established robust correlations between hardness and 
twelve key process parameters. The final identified significant parameters include: 
thickness, width, carbon content, silicon content, strip steel speed, heating furnace 
temperature, soaking furnace temperature, slow cooling furnace temperature, over-
aging furnace temperature, rapid cooling furnace temperature, quenching temperature, 
and temper mill tension. For Problem 2, which requires establishing a data-driven online 
quality inspection model for steel strips and analyzing its performance, we first 
introduced the random forest algorithm to significantly enhance model effectiveness 
and computational efficiency. Through this approach, we extracted the most 
representative feature subset, revealing that carbon content and rapid cooling furnace 
temperature are the most critical factors in predicting steel strip product quality, 
followed by physical dimensions, with silicon content and other heat treatment 
parameters also exhibiting certain influence. Building upon this optimized feature 
subset, we employed a backpropagation neural network to construct the online 
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prediction model. Through hyperparameter tuning, we optimized the neural network 
architecture configuration, determining that 12 hidden layers are optimal for the 
acceleration/deceleration phases while 9 hidden layers achieve peak performance 
during stable operation phases. Finally, we conducted efficiency optimization and 
performance evaluation of the model, with results demonstrating excellent prediction 
performance at 97.6733% accuracy, prediction errors within 5%, and overall 
satisfactory prediction outcomes. For Problem 3, which requires establishing a 
comprehensive and efficient solution for optimizing process parameters of steel strips, 
simulated annealing algorithm was adopted in this study to globally search for optimal 
solutions, given the difficulties in developing mechanistic models due to the complex 
interdependencies among control parameters. The methodology encompasses 
parameter initialization, key parameter identification, objective function formulation, 
constraint handling, result validation, and model integration. Building upon the results 
of Problem 1, we first identified critical parameters and construct the objective function, 
followed by setting practical production constraints. The simulated annealing algorithm 
performs global optimization while effectively addressing constraint limitations 
through a penalty function mechanism. The optimal solution yields: strip speed of 201 
m/s, heating furnace temperature at 710°C, soaking furnace temperature at 645°C, slow 
cooling furnace temperature at 608°C, over-aging furnace temperature at 355°C, rapid 
cooling furnace temperature at 67°C, quenching temperature at 45°C, and temper mill 
tension at 2420 kN, achieving optimal mechanical properties under these conditions. 

Keywords 
Principal component analysis, Pearson correlation coefficient, random forest algorithm, 
backpropagation neural network algorithm, simulated annealing algorithm. 

1. Introduction 

With the rapid development of automotive, home appliance and construction industries, the 
market demand for cold-rolled steel strips as a key fundamental material continues to rise. 
Driven by the “carbon peaking” and “carbon neutrality” policies, the steel industry urgently 
needs to improve product quality and production efficiency through green and intelligent 
transformation. The mechanical properties (such as hardness) of cold-rolled steel strips 
directly determine their application value, while the complex coupling characteristics of 
continuous annealing process parameters make it difficult for traditional mechanism models to 
precisely control the production process, resulting in significant product quality fluctuations 
and high energy consumption, which have become core issues constraining industry 
development. 
This study aims to overcome the limitations of traditional models through data-driven 
approaches to achieve precise hardness prediction and intelligent process parameter 
optimization for cold-rolled steel strips. Specific objectives include: (1) screening process 
parameters with significant effects on hardness to identify key production control points; (2) 
establishing a real-time online detection model for dynamic product quality monitoring; (3) 
developing a global optimization strategy to enhance product performance stability and 
consistency. By integrating principal component analysis (PCA), random forest, 
backpropagation neural networks, and simulated annealing algorithm, multi-model 
collaborative optimization is innovatively achieved while maintaining a balance between 
prediction accuracy and computational efficiency[1]. 
The significance of this study lies in providing a scientific and efficient intelligent solution for 
cold-rolled steel strip production. For one thing, precise prediction and parameter optimization 
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can significantly reduce rejection rates and energy consumption, enabling enterprises to 
achieve cost reduction and efficiency improvement. For another, the model’s scalability 
provides valuable reference for process optimization in other metal processing fields, while 
aligning with Industry 4.0 and smart manufacturing trends to inject new momentum into the 
green transformation of the steel industry. 

2. Problem Analysis 

2.1. Analysis of Problem 1 

 
Figure 1. Analysis flowchart of Problem 1 

 
The core of Problem 1 is a correlation analysis issue concerning how to identify process 
parameters that significantly affect the mechanical properties (hardness) of steel strips from 
numerous variables. This identification will enable field operators to better understand key 
control points in production processes, while allowing enterprises to adjust production 
workflows by prioritizing monitoring and adjustment of these critical parameters, thereby 
avoiding wasted time and resources on insignificant variables [2]. This approach contributes to 
enhanced production efficiency and reduced manufacturing costs. 
For Problem 1, we first integrated steel strip specifications, control parameters, and hardness 
data, performed data cleaning to eliminate missing and abnormal values, and conducted 
normalization to establish a solid foundation for subsequent model solutions. Subsequently, 
both PCA and Pearson correlation coefficient models were employed to screen features 
strongly correlated with hardness, with these two models serving as mutual validation. 
Ultimately, the key parameters influencing steel strip hardness were definitively identified. 

2.2. Analysis of Problem 2 
Problem 2 requires a model capable of real-time quality prediction for steel strips, enabling 
field operators to promptly adjust process parameters and ensure product quality compliance.  
The random forest algorithm was employed to identify and select features with significant 
predictive impact, effectively reducing model complexity while substantially mitigating 
overfitting risks. Subsequently, a backpropagation neural network was adopted as the core 
algorithm to establish the detection model. Through hyperparameter tuning, the neural 
network architecture is optimized, further refining the training process. Results demonstrate 
that flexibly adjusting network structures according to data characteristics proves an effective 
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strategy for enhancing model performance. Finally, model efficiency optimization was 
conducted and performance evaluation was performed on extended test sets to prevent 
overfitting occurrences. 
 

 
Figure 2. Analysis flowchart of Problem 2 

2.3. Analysis of Problem 3 

 
Figure 3. Analysis flowchart of Problem 3 
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Problem 3 requires establishing a process parameter optimization solution for steel strips to 
enhance mechanical properties (e.g., hardness), thereby improving product quality and 
production efficiency. This involves employing machine learning methods to model 
relationships between parameters and mechanical properties, followed by utilizing 
optimization algorithms to identify optimal process parameter combinations. 
An integrated optimization solution is proposed in this study to address the challenge of steel 
strip process parameter optimization. Initially, key process parameters were identified through 
analysis and experimentation, with an objective function established to evaluate optimization 
effectiveness. Subsequently, comprehensive constraints were formulated based on actual 
production requirements. The simulated annealing algorithm was employed to initiate from 
random solutions and explore the extensive parameter space for optimal solutions, while 
penalty functions handle constraints to ensure solution validity and practicality [3]. 
Optimization effectiveness was assessed through validation sets or actual production data, 
comparing pre- and post-optimization quality and efficiency metrics, with iterative algorithm 
adjustments for performance enhancement. Furthermore, strip specifications and performance 
parameters were innovatively integrated in this study to construct a predictive model that 
accurately forecasts process parameters while quantifying prediction deviations, thereby 
providing scientific basis for precision adjustments and establishing foundations for intelligent 
production control. 

3. Model Assumptions 

To facilitate problem understanding, the following model assumptions are established in this 
study: 
(1) Quantitative correlation assumption: The mechanical properties of steel strips exhibit 
quantifiable mathematical relationships with their specifications and process parameters； 
(2) Model validity assumption: The selected models can effectively fit the data, provide accurate 
predictions, and maintain generalization capability; 
(3) Parameter adjustability assumption: Process parameters are adjustable within certain 
ranges to optimize strip performance; 
(4) Environmental stability assumption: Environmental factors and equipment conditions 
remain relatively stable during data collection or can be corrected through preprocessing; 
(5) Error and uncertainty management: Prediction processes inherently contain errors and 
uncertainties that require quantitative assessment and mitigation; 
(6) Optimization objectives and constraints: The optimization aims to maximize strip 
performance while considering production cost constraints. 

4. Symbol descriptions 

To enhance paper readability, Table 1 presents the symbols and their descriptions used in our 
model development: 
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Table 1. Symbol descriptions 

Symbol Meaning Unit 

y Hardness H 

 X୧ Variables involved, i=1, ...12   

 X୩ The k-th data point  

 u Mean value  

 σ Variance  

 β୧ Regression coefficient, i=1, ...5  

 w Weight coefficient  

 θ Random number  

 R Correlation coefficient  

5. Model Establishment and Solution 

5.1. Pre-modeling Preparation 
5.1.1. Data Preprocessing 
The linear interpolation technology was employed in this study to accurately estimate and fill 
limited missing values. This method not only effectively smooths data sequences but also 
precisely estimates reasonable values at missing points while maintaining overall data trends, 
establishing a solid foundation for subsequent data analysis [4]. Within the MATLAB 
environment, the interp1 function is utilized to precisely calculate and interpolate 
corresponding y-values for specified new x-value sets based on given x-y value pairs, thereby 
achieving effective data filling and smoothing, with partial processing results shown in the 
following figure. 
 

 
Figure 4. Linear interpolation processing results 

 
The study subsequently applied the moving median method, sliding a fixed window across the 
dataset to calculate the median within each window as new data points. Implemented in 
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MATLAB, this approach demonstrates superior reliability compared to moving average 
methods by remaining unaffected by extreme values, thereby effectively smoothing data and 
significantly reducing outlier impacts, with notable processing results as shown in the following 
figure. 
 

 
Figure 5. Moving median processing results 

 
Through the integrated application of linear interpolation technology and moving median 
smoothing method, missing values and potential outliers in the dataset were successfully 
addressed in this study. The results demonstrate that the processed dataset contains no 
missing values while exhibiting significantly mitigated outlier effects, achieving marked 
improvement in data quality. 
5.1.2. Normality Test 
The normal distribution, also known as Gaussian distribution, is characterized by its 
symmetrical bell-shaped curve with standard deviation controlling its width. Normality tests 
are commonly employed to evaluate whether data follows this distribution [5]. The Q-Q plot 
method is adopted in this study, which visually examines data normality by comparing sample 
quantiles with theoretical normal distribution quantiles. 
First, the sample data was sorted in ascending order. Subsequently, theoretical quantiles were 
calculated by determining the corresponding quantiles of the standard normal distribution for 
each sorted data point, achieved through comparison between the sample’s cumulative 
distribution function (CDF) and the standard normal CDF. Specifically, for a sample containing 
n observations, the theoretical normal quantile for the i-th observation equals the quantile in 
the standard normal distribution corresponding to a cumulative probability of 

୧ି଴.ହ

୬
 . (Note: The 

subtraction of 0.5 and division by n implements linear interpolation to more accurately reflect 
the sample distribution). 
A scatter plot (Q-Q plot) is then generated with the sample quantiles (i.e., the sorted data values) 
as the x-coordinates and their corresponding theoretical normal quantiles as the y-coordinates. 
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Figure 6. Q-Q plot 

 
The figure above demonstrates that when points on the Q-Q plot closely cluster around a 
straight line, this indicates the sample data originates from a normal distribution. 

5.2. Model Establishment and Solution for Problem 1 
5.2.1. Modeling Analysis and Approach for Problem 1 
Problem 1 requires identifying which parameters significantly influence the mechanical 
properties of steel strips. The strip specification data, control process parameters, and hardness 
performance indicators were systematically cleansed and organized in this study to ensure 
data quality. Subsequently, PCA was employed for feature dimensionality reduction to 
eliminate redundant information while preserving key variations. Pearson correlation analysis 
was then applied to screen features highly correlated with hardness. Finally, the model was 
optimized by incorporating significance test results, identifying parameters that substantially 
affect the strip’s mechanical properties, thereby optimizing both product quality and 
production efficiency in practical manufacturing. 
5.2.2. Construction of PCA Model 
Principal component analysis (PCA) is applied to reduce the dimensionality of the preprocessed 
data. 
PCA is a widely used dimensionality reduction technique for high-dimensional data, 
algebraically characterized by transforming the original random vector's covariance matrix 
into a diagonal matrix, and geometrically represented as converting the original coordinate 
system into a new orthogonal coordinate system. This model transforms multiple variables into 
a few composite variables (principal components) while maximally preserving original data 
information, where these principal components capture most information from the original 
variables, thereby achieving dimensionality reduction for multivariate data. [6] 
(1) Data standardization 
The numerical values of various influencing parameters and the hardness of the strip steel are 
obtained through data preprocessing, and the principal component analysis (PCA) is used to 
reduce the dimensionality of the data. Firstly, the preprocessed data was standardized to 
eliminate the influence of dimensions and orders of magnitude, making it convenient for 
comprehensive analysis. The n-th data points of the ρ-dimensional random vector
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 formed from the preprocessed data set are  Χ = ൫x୧ଵ, x୧ଶ, x୧ଷ, ⋯ , x୧୮൯
୘

, 

. A sample matrix was constructed, and the following standardization 
transformation was carried out on the sample matrix: 

 
(1) 

 

Where, , the standardized matrix Z is obtained. 

(2) Calculate the correlation coefficient matrix R from the standardized matrix Z 
 

 
(2) 

 
Where, 
 

 
(3) 

 
Calculate the covariance matrix of the standardized data. Each element of the covariance matrix 
is the covariance between individual variables, which reflects the correlation between variables. 
The formula for calculating the covariance is as follows: 
 

𝐶𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋௜ − 𝑋ത)(𝑌௜ − 𝑌ത)௡

௜ୀଵ

𝑛 − 1
 (4) 

 
(3) Principal component selection 
The first few principal components are selected in this study based on eigenvalue magnitude, 
as they contain the majority of the data’s information. The number of principal components is 
determined by the cumulative contribution rate (i.e., the ratio of the sum of selected eigenvalues 
to the total sum of all eigenvalues)[7]. 
Solve the characteristic equation of the sample correlation matrix R to obtain P eigenvalues, 
then determine the number of principal components (m) ensuring the data utilization rate 
exceeds 85%. For each characteristic equation solution: 
 

 

 

 

(5) 

 
Obtain the unit eigenvector b୨

଴. 
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5.2.3. Construction of Pearson Correlation Coefficient Screening Model 
The Pearson correlation coefficient, a statistical measure in statistics for quantifying the 
strength and direction of linear relationships between two variables, reflects their linear 
dependence by calculating the ratio of covariance to the product of their standard deviations. 
Therefore, the Pearson correlation coefficient is employed in this study to preliminarily identify  
Independent variables X：{Xଵ, Xଶ, ⋯ Xଵଶ} respectively represent: strip thickness, width, carbon 
content, silicon content, strip speed, heating furnace temperature, soaking furnace temperature, 
slow cooling furnace temperature, over-aging furnace temperature, rapid cooling furnace 
temperature, quenching temperature, and temper mill tension; dependent variable Y denotes 
strip hardness. The sample mean and sample variance are calculated using the following 
formula: 
 

𝑋ത =
∑ ௑೔

೙
೔సభ

௡
,𝑌ത =

∑ ௒೔
೙
೔సభ

௡
 (6) 

  

𝐶𝑂𝑉(𝑋, 𝑌) =
∑ (𝑋௜ି𝑋ത)(𝑌௜ି𝑌)തതത௡

௜ୀଵ

𝑛 − 1
 (7) 

 
The Pearson correlation coefficient ranges from -1 to 1, indicating both the strength and 
direction of linear relationships between variables. A value approaching 1 signifies a strong 
positive correlation (concurrent increase), while a value approaching -1 indicates a strong 
negative correlation (inverse relationship). Values near 0 suggest either no linear relationship 
or an extremely weak one. The Pearson correlation coefficient is calculated as: 
 

𝑟௫௬ =
𝐶𝑜𝑣(𝑋, 𝑌)

𝑆௫ ∙ 𝑆௬
 (8) 

5.2.4. Model Solution Results 
After inputting the data into the PCA model, MATLAB was utilized to solve for each eigenvalue 
and its corresponding contribution rate, as presented in the following table. 
 

Table 2. Contribution rate results 
Name Eigenvalue Contribution rate Cumulative contribution rate 

Carbon content 3.8561 0.2966 0.2966 
Silicon content 2.2324 0.1717 0.4683 

Heating furnace temperature 1.6641 0.1280 0.5964 
Rapid cooling furnace temperature 1.2170 0.0936 0.6900 

Strip steel width 1.1016 0.0847 0.7747 
Strip steel thickness 0.9244 0.0711 0.8458 
Temper mill tension 0.5795 0.0446 0.8904 

Soaking furnace temperature 0.5564 0.0428 0.9332 
Strip steel speed 0.4232 0.0326 0.9658 

Over-aging furnace temperature 0.1961 0.0151 0.9808 
Quenching furnace temperature 0.1681 0.0129 0.9938 

Slow cooling furnace temperature 0.0480 0.0037 0.9975 
Strip steel hardness 0.0329 0.0025 1.0000 
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Select carbon content, silicon content, heating furnace temperature, rapid cooling furnace 
temperature, strip steel width, strip steel thickness, temper mill tension, soaking furnace 
temperature, strip steel speed, over-aging furnace temperature, quenching furnace 
temperature, and slow cooling furnace temperature as the principal components from the 
above table. 
To make the results more intuitive, a heatmap of the Pearson correlation coefficients is plotted 
using MATLAB. The visualization results are as follows: 

 
Figure 7. Heatmap of Pearson correlation coefficient 

 
From the figure, it can be seen that the hardness of the cold-rolled strip steel gradually increases 
with the increase of the strip steel thickness, strip steel width, carbon content, strip steel speed, 
and quenching furnace temperature, which belongs to a positive correlation. The hardness of 
the cold-rolled strip steel gradually decreases with the increase of the silicon content, heating 
furnace temperature, soaking furnace temperature, slow cooling furnace temperature, over-
aging furnace temperature, rapid cooling furnace temperature, and temper mill tension, which 
is a negative correlation. 
Through comparative analysis, the results obtained from the PCA model are the same as those 
obtained from the above-mentioned Pearson correlation coefficient screening model. This 
further verifies the accuracy of the above conclusions and the high goodness of fit of the model. 
Therefore, it is determined that the strip steel thickness, strip steel width, carbon content, 
silicon content, strip steel speed, heating furnace temperature, soaking furnace temperature, 
slow cooling furnace temperature, over-aging furnace temperature, rapid cooling furnace 
temperature, quenching temperature, and temper mill tension have a significant impact on the 
mechanical properties of the strip steel products. 

5.3. Model Establishment and Solution for Problem 2 
5.3.1. Modeling Analysis and Approach for Problem 2 
Rigorous and efficient procedures were adopted in this study to ensure precision, robustness, 
and real-time capability when constructing the online steel strip quality detection model. First, 
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random forest optimization was employed for feature selection to identify critical features 
while eliminating redundancy, thereby reducing model complexity and preventing overfitting. 
Subsequently, a meticulously designed backpropagation neural network served as the 
predictive model, with its prediction accuracy and generalization capability enhanced through 
optimized network architecture and hyperparameter tuning. Robustness is further 
strengthened via sensitivity testing and targeted optimization to ensure model adaptability in 
complex production environments. Finally, comprehensive computational efficiency 
optimization guaranteed real-time responsiveness, meeting production monitoring 
requirements while enhancing industrial applicability and competitiveness. 
5.3.2. Data Standardization Processing 
During data analysis, different features typically exhibit varying dimensions, which introduces 
scale disparities among the data. To eliminate such discrepancies, data standardization is 
required to ensure uniform scaling. Data standardization refers to proportionally scaling data 
to fall within a specific smaller range, thereby removing unit constraints and transforming them 
into dimensionless pure numerical values, enabling comparison and weighting of indicators 
with different units or magnitudes. After comparative analysis, the Z-Score standardization 
method is adopted for data standardization. 
Z-Score standardization is a data standardization method used to transform data into a 
distribution with a mean value of 0 and a standard deviation of 1. This method makes the data 
distribution exhibit the characteristics of a standard normal distribution, so as to conduct 
statistical analysis, hypothesis testing, and build some machine learning models [8]. The Z-
Score standardization formula is as follows: 
 

 

(9) 

 
The presentation of partial standardization results of the characteristic variables is shown in 
the following table: 
 

Table 3. Standardization results 

 
Strip steel 
thickness 

Strip 
steel 

width 

Carbon 
content 

Silicon 
content 

Strip 
steel 

speed 

Soaking furnace 
temperature 

Slow cooling 
furnace 

temperature 
1 -0.4410 -0.8596 1.4869 -0.3954 -1.4423 1.3392 1.7248 
2 -0.8218- -0.9374 -0.5202 -0.7695 -1.4423 2.0588 1.7123 
3 -0.9097 2.1772 -0.6992 -1.1437 -0.7468 -0.3942 1.0884 
4 -0.7046 -0.2366 0.5181 2.2233 0.8011 0.0801 -0.4214 
5 0.8183 1.4764 -0.1084 -1.1437 -0.0962 -0.4432 1.0635 
6 -0.7046 -0.1588 -0.8066 -1.1437 -0.2982 0.0964 -0.5960 
7 -1.4075 2.3330 -0.5202 1.5178 1.4742 -0.1489 0.2524 
8 -0.4703 -0.0809 0.2317 -0.3954 -2.9679 -0.4432 0.1401 

 
Subsequently, we built a decision tree based on the new sample subset and feature subset. 
Finally, multiple decision trees were successively constructed, laying the groundwork for the 
implementation of the random forest algorithm. 

Std 
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5.3.3. Establishment and Solution of the Quality Prediction Model for Strip Steel 
Products based on Random Forest 

The random forest algorithm is an ensemble learning method widely used in machine learning, 
which ingeniously utilizes multiple decision trees to enhance the prediction ability. The core 
idea of this method lies in constructing a “forest” in a random way. This forest is composed of 
numerous independent decision trees. When faced with new sample data, each decision tree in 
the forest will make predictions independently and determine the category to which the sample 
belongs. Subsequently, through a voting mechanism, the prediction results of the majority of 
decision trees are taken as the final classification decision, thus achieving the accurate 
classification of new samples [9]. In the case of regression problems, the random forest adopts 
another strategy, that is, it outputs the average value of the prediction results of all decision 
trees and takes this as the final predicted value. The construction process of the random forest 
is shown in the following figure: 
 

 
Figure 8. Flowchart of random forest construction 

 
(1) Calculation of feature importance 
The calculation steps for the importance of the input feature X are as follows: (1) For each 
decision tree, a training data is obtained by means of repeated sampling. At this time, 
approximately one-third of the data is not utilized, and this part of the data is called out-of-bag 
data (OOB). Then, calculate the out-of-bag data error (ERROOB1); (2) Add random noise to the 
input feature X in all out-of-bag data samples, and calculate the error again (ERROOB2); (3) 
Suppose there are a total of N decision trees in the random forest, then the calculation method 
for the importance 𝑖𝑚𝑝𝑋 of the input feature X is as follows: 
 

 (10) 
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Here, 𝑖𝑚𝑝𝑋 reflects the importance of input features. After introducing random noise, if the out-
of-bag (OOB) accuracy decreases significantly, causing 𝐸𝑅𝑅𝑂𝑂𝐵₂ to increase and consequently 
leading to a larger 𝑖𝑚𝑝𝑋 value, this indicates the feature has substantial influence on prediction 
results, i.e., higher importance. The results are shown in the following figure: 
 

 
Figure 9. Importance scores of feature variables 

 
The results are shown in the following table: 
 

Table 4. Importance scores of partial feature variables 
Feature 
Variable 

Strip steel 
thickness 

Strip 
steel 

width 

Carbon 
content 

Silicon 
content 

Strip 
steel 

speed 

Heating 
furnace 

temperature 

Slow cooling 
furnace 

temperature 

Rapid cooling 
furnace 

temperature 

Quenching 
furnace 

temperature 

Temper 
mill 

tension 

Importance 
score 

0.07923 0.07217 0.16431 0.01846 0.04962 0.06437 0.06188 0.165128 0.06180 0.06346 

 
Analysis of Figure 9 and Table 4 reveals that carbon content and rapid cooling furnace 
temperature are identified as the most critical features in the steel strip quality prediction 
model, exerting significant influence on prediction outcomes. While the strip’s physical 
dimensions (thickness and width) remain important though comparatively less impactful, 
silicon content and other heat treatment temperature parameters also contribute measurable 
importance, collectively constituting the model’s key predictive factors. 
5.3.4. Construction of Quality Prediction Model for Steel Strips based on BP Neural 

Network 
The backpropagation (BP) algorithm represents the most widely adopted neural network 
training methodology, employing gradient descent to implement error backpropagation 
computations. During neural network model training, signals propagate forward sequentially 
from the input layer through multiple hidden layers to the output layer. When discrepancies 
exist between predicted and expected outputs, error signals propagate backward along the 
reverse transmission path, progressively adjusting inter-neuronal weights and thresholds 
through iterative cycles until the error meets predefined convergence criteria [10]. The BP 
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neural network constitutes a highly nonlinear input-output mapping. That is expressed as 
follows. 
 

 (11) 

 
For sample set inputs xi(Rm) and outputs yi(Rn), it is mathematically established that there 
exists an objective mapping g, making  

The current objective is to determine a mapping f that represents the optimal least squares 
approximation of g. Hecht-Nielsen’s proof of Kolmogorov’s theorem states: For any given 
continuous function  (where U denotes the closed unit interval [0,1]), ƒ can be precisely 
implemented by a 3-layer feedforward network. This network’s first layer (input layer) 
contains m processing units, the intermediate layer comprises 2m+1 processing units, and the 
third layer has n processing units. The topology of this multilayer BP neural network is 
illustrated in the following figure. 
 

 
Figure 10. Topological structure of multilayer BP neural network 

5.3.5. Data Standardization 
Data exportation and meticulous data cleaning were conducted in this study, including effective 
handling of outliers and missing points, along with appropriate data denoising techniques to 
reduce interference from noise in analytical results. Subsequently, to more precisely analyze 
the steel strip production process, each coil’s operation cycle was divided into acceleration-
deceleration and stable rolling phases, with random forest algorithm applied separately in both 
phases to compute input feature importance. Through this procedure, the study successfully 
identified optimal input features post data selection, providing robust support for subsequent 
model training. Finally, to ensure data consistency and comparability, max-min normalization 
was implemented on cleaned data using a specific formula to transform values into the [0,1] 
interval, establishing a solid foundation for follow-up analysis. The formula is as follows: 
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(12) 

 
where max (x୩)  and min (x୩)  represent the maximum and minimum values in the data 

sequence respectively, with  denoting the k-th data point. Subsequently, all data undergo 
dimensionless processing using the standardization method previously employed in the 
aforementioned problem. 
5.3.6. BP Network Training Procedure: 
Step 1: Initialize all weights with small random numbers from a uniform distribution, e.g., 
W[0]=[-0.2,0.2]. 
Step 2: Apply an input pattern from training pair [x(k), d(k)] to the network. Compute the actual 
output y(k) at the output layer. 
Calculate the output layer error: 
 

       (13) 

 
Where m denotes the number of output layer nodes. 
Calculate the hidden layer error: 
 

       
(14) 

 
Where h represents a node in a given hidden layer; H denotes the total number of nodes in this 
hidden layer, and l indicates all nodes in the subsequent layer connected to hidden node h. 
Step 3: Update all network weights. 
 

 (15) 

 
Where  denotes the weight from hidden layer node p (or input p) to node q; represents 
the output of node p (or input to node q), and η indicates the training rate (typically set between 
0.01-1). 
Step 4: Repeat the process from Step 2. 
The BP neural network algorithm flowchart is presented below: 
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Figure 11. Flowchart of BP neural network algorithm 

 
Based on the aforementioned algorithm flowchart, a three-layer BP neural network program 
was developed by using MATLAB. The implementation first involved data collection, cleaning, 
normalization, and partitioning into training and testing sets. Subsequently, a network 
architecture was designed comprising an input layer, one hidden layer (10 neurons), and an 
output layer, with random initialization of weights and biases. During training, data underwent 
forward propagation to compute outputs, followed by backward propagation of errors between 
outputs and true labels to iteratively adjust weights and biases until meeting predefined 
training criteria. Upon training completion, model performance was evaluated using the test 
set to ensure robust generalization capability. Finally, the trained model was deployed for 
practical applications to execute prediction or classification tasks. 
The training diagram of the neural network algorithm is as follows: 
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Figure 12. The training diagram 

 
The first 800 data groups were allocated as the training set, while the remaining 200 groups 
served as the validation set. The trained network was then applied to the validation set to verify 
the regression prediction results, as illustrated in the following figure: 
 

 
Figure 13. Regression validation results 

 
While deviations exist between sample values and validation values in the figure, their overall 
variation trends demonstrate consistent alignment, confirming the neural network model’s 
successful training via the sample set. Furthermore, the high congruence between BP neural 
network predictions and actual measurements, as evidenced in the comparison chart, enables 
reliable real-time online prediction for various variables. 
5.3.7. Neural Network Hyperparameter Determination and Model Performance 

Evaluation 
In constructing and optimizing the neural network architecture for steel strip hardness 
prediction, the selection of hyperparameters-particularly the number of hidden layers and 
neurons per layer-significantly influences the model’s learning capacity, representational 
capability, and ultimate predictive performance. To identify the optimal network structure, the 
control variable method was employed to adjust network configurations separately for 
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acceleration-deceleration and stable rolling phase data [11]. The final determined network 
architecture for the acceleration-deceleration phase is 12-12-1-1, while the stable rolling phase 
adopts a simplified 12-9-1-1 structure, as illustrated below: 
 

 
Figure 14. Network architecture 

 
To validate the effectiveness of the network architecture, the model’s performance on the test 
set was evaluated in this study, and the evaluation yielded the quantitative metrics shown in 
Table 5. 
 

Table 5. Quantitative metrics including MSE and MAE 

SSE MAE MSE RMSE MAPE Correlation coefficient 
R 

Prediction 
accuracy 

133775.9241 14.7534 445.9197 21.1168 2.5429% 0.54362 97.4571% 

 
The table reveals that while the acceleration-deceleration phase employs a more complex 
network architecture, the stable rolling phase’s structure demonstrates superior performance 
across MSE, MAE, and other metrics while maintaining 97.4571% prediction accuracy. This 
indicates that flexibly adjusting network configurations according to data characteristics 
constitutes an effective strategy for enhancing model performance. 
5.3.8. Model Efficiency Optimization 
In machine learning model construction, model efficiency optimization and result analysis 
constitute critical steps for enhancing performance and reliability. Specifically, to more 
accurately evaluate model performance, the test set was expanded from the original 200 data 
groups to 300 groups. This adjustment aimed to better simulate application scenarios by 
increasing sample diversity, thereby effectively preventing model overfitting.  
Subsequently, the expanded test set was utilized to conduct comprehensive performance 
evaluation, calculating and recording multiple quantitative metrics including SSE. Comparative 
analysis of pre- and post-optimization metric variations provided intuitive understanding of 
model performance improvements. 
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Table 6. Optimized quantitative metrics including MSE and MAE 
SSE MAE MSE RMSE MAPE Correlation coefficient R Prediction accuracy 

67171.6014 13.6349 335.858 18.3264 2.3267% 0.55244 97.6733% 

 
Following optimization, the model’s performance variations were compared across three 
datasets, with the MSE performance variation graph presented here. 
 

 
Figure 15. MSE performance variation graph 

 
The results demonstrate that the training set MSE progressively decreases with increasing 
iterations, indicating continuous model learning and predictive capability improvement. More 
critically, the validation set MSE reaches its minimum value of 0.054816 at the 4th iteration-- 
this significant reduction confirms the effectiveness of our optimization strategy and indicates 
the model’s attainment of near-optimal parameter configuration at this stage. 

5.4. Model Establishment and Solution for Problem 3 
5.4.1. Modeling Analysis and Approach for Problem 3 
A comprehensive optimization framework was developed in this study to address process 
parameter optimization challenges in steel strip production, a simulated annealing algorithm 
was employed, which systematically incorporates: (1) parameter initialization, (2) key 
parameter identification, (3) objective function formulation, (4) constraint handling, (5) result 
validation, and (6) iterative optimization. We first established critical parameters and 
constructed corresponding objective functions, followed by implementing practical production 
constraints. The global optimization capability of the simulated annealing algorithm was 
leveraged to identify optimal solutions while integrating penalty functions for effective 
constraint management [12]. Optimization performance was rigorously evaluated through 
validation datasets, with subsequent iterative refinement of algorithm parameters. 
Furthermore, an advanced predictive model synergizing strip dimensional specifications and 
mechanical properties was developed, enabling high-precision process parameter prediction 
and dynamic adjustment, thereby establishing a robust foundation for intelligent production 
control systems. 
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5.4.2. Key Parameter Identification and Impact Analysis 
Initially, an in-depth examination of multiple critical process parameters affecting steel strip 
product quality were conducted. Through rigorous experimental validation and statistical 
analysis, the specific mechanisms by which these parameters influence product quality were 
elucidated, establishing a solid foundation for subsequent optimization efforts. 
Since the problem explicitly specifies strip hardness as the performance metric, the developed 
solution for steel strip process parameter optimization aims to thoroughly analyze and 
precisely control hardness performance to achieve maximum strip hardness values. 
From Problem 1, principal component analysis and Pearson coefficients have identified 12 key 
parameters, categorized into strip specification data and control process parameters. For 
Problem 3, which requires setting process parameters for strip products, we assumed 
consistent strip specifications while exclusively considering the influence of control process 
parameters on hardness. 
Table 2 from Problem 1 presents the correlation relationships between control process 
parameters and strip hardness. 
The specific impacts of control process parameters on strip hardness are as follows: 
 

Table 7. Correlation relationships of selected parameters 
Parameter 

name 

Strip 
steel 

thickness 

Strip 
steel 

width 

Carbon 
content 

Silicon 
content 

Strip 
steel 

speed 

Heating 
furnace 

temperature 

Slow cooling 
furnace 

temperature 

Rapid cooling 
furnace 

temperature 

Quenching 
furnace 

temperature 

Relevance 0.04976 0.005457 0.3553 -
0.00355 

0.1609 -0.1276 -0.3122 0.3985 0.2815 

5.4.3. Objective Function and Constraint Formulation 
With the optimization objective explicitly defined as hardness maximization, the objective 
function was meticulously constructed to serve as the key mechanical performance metric for 
evaluating optimization effectiveness. Simultaneously, based on actual production conditions, 
comprehensive constraint conditions were specified, including permissible ranges for strip 
speed, temperature limits for various furnaces, and tension requirements for the temper mill - 
ensuring the optimization process aligns with practical production requirements. The objective 
function for maximizing steel strip hardness is formulated as follows: 
 

𝑦 = 𝜇 + 𝛽ଵ ∙ 𝑥ଵ + 𝛽ଶ ∙ 𝑥ଶ + ⋯ + 𝛽଼ ∙ 𝑥଼ + 𝜔 ∙ g(𝑥ଵ, ⋯ , 𝑥௠) (16) 
 
Where μ represents the hardness mean; βଵ~βହ denotes regression coefficients; g(xଵ, ⋯ , x୫)is 
a truncated linear function of transformed remaining variables and ω  indicates the weight 
coefficient. 
Constraint conditions: 
 

ቄ
𝛽௜ > 0

 0 < 𝑇 ≤ 1500
     

𝑇 represents the temperature. 
5.4.4. Optimization of the Simulated Annealing Algorithm 
The simulated annealing algorithm (abbreviated as SA) is a general optimization algorithm 
based on probability, which is inspired by the annealing process in solid-state physics. The 
simulated annealing algorithm solves optimization problems by simulating the phenomenon 
that the temperature of a solid substance gradually decreases and its internal energy gradually 
decreases during the annealing process. During the annealing process, the particles inside the 
solid become disordered as the temperature rises, and the internal energy increases; while 
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when it cools slowly, the particles gradually become ordered, reaching an equilibrium state at 
each temperature, and finally reaching the ground state at room temperature, with the internal 
energy reduced to the minimum. The simulated annealing algorithm combines this physical 
process with the search in the solution space of combinatorial optimization problems. By means 
of random search and probabilistically accepting new solutions, it avoids getting trapped in 
local optimal solutions, so as to find the global optimal solution or an approximate optimal 
solution [13]. 
The specific process is shown in the following figure: 
 

 
Figure 16. Flowchart of simulated annealing algorithm 

 
The simulated annealing was employed as the optimization tool, where properly initialized 
algorithm parameters (including initial temperature, cooling rate, iteration count, and 
acceptance probability function) enable the algorithm to commence from randomly generated 
initial solutions. Leveraging its global search capability and local optimum escape mechanism 
[14], the algorithm explores the extensive parameter space to identify globally optimal or near-
optimal solutions. During optimization, constraint conditions are effectively handled via 
penalty function methods, ensuring generated solutions simultaneously satisfy optimization 
objectives and practical production constraints. 
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(1) Initialization 
Set initial temperature T଴ , temperature decay rate, control parameter Τ, temperature decay 
function, terminal condition, and Markov chain length. Designate initial solution x଴  and 
corresponding objective function f(x଴). 
Construct solution space ξ representing all possible sets of m elements selected from {1, ⋯ N}, 
expressed as: 
 

𝜉 = ൛𝑋 = {𝑥ଵ, ⋯ , 𝑥௠}ห1 ≤ 𝑥௜ ≤ 𝑁, 𝑥௜ ≠ 𝑥௝ , 𝑓𝑜𝑟𝑖, 𝑗 = 1, ⋯ , 𝑚ൟ (17) 
 

The initial solution may be selected asX଴ = {1, ቂ
୒

୫
ቃ , ⋯ , N}. All state transitions are performed 

within the solution space. 
(2) Iteration process 
Step 1: At parameter T = T(k), conduct L୩ trial searches as follows: First, generate a random 
vector Z୩  based on the properties of current X୩ , yielding a new trial point X୩′  in the 
neighborhood of the current solution.  
 

𝑋௞′ = ൜
𝑋௞ + 𝑍௞ , 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋
𝑋(௞ା௠), 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋  

 (18) 

 

Here, X represents the discrete value sequence, and k denotes the discrete position of the 
current solution. 
Subsequently, generate a uniformly distributed random number θ ∈ (0,1) and compute the 
transition probability P corresponding to the Metropolis acceptance criterion at the given 
iteration point Xk and temperature Tk. 
 

𝑃 = ቐ

         1                             , 𝑤ℎ𝑒𝑛 𝑓(𝑋௞′) < 𝑓(𝑋௞)

exp ቆ
𝑓(𝑋௞

ᇱ ) − 𝑓(𝑋௞)

𝑇௞
ቇ , 𝑤ℎ𝑒𝑛 𝑓(𝑋௞′) ≥ 𝑓(𝑋௞)

 (19) 

 

If θ < P, accept the new solutionX୩ = X୩
ᇱ , f(X୩) ≥ f(X୩′); otherwise, retain the current solution. 

If trial searches conducted are fewer than Lk, reinitialize the process; otherwise, proceed to 
Step 2. 
Step 2: If termination criteria are satisfied, the algorithm concludes with the current solution 
as the global optimum; otherwise, continue to Step 3. 
Step 3: Generate new temperature control parameter Tk+1 and Markov chain length Lk+1 using 
the specified temperature decay function, then return to Step 1 for equilibrium point 
optimization at the next temperature level. 
The simulated annealing results are as follows: 
 

Table 8. The simulated annealing results 
Parameter μ 

β1 -0.008805 
β2 0.000213 
β3 0.01685 
β4 -0.2280 
β5 0.1975 
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5.4.5. Model Integration and Process Parameter Prediction 
Building upon the model analysis from Problem 2, this paper proposes a framework 
establishing relational models between steel strip process parameters and strip 
specifications/performance parameters. The model takes strip specification-performance 
indicators as inputs and process parameters as outputs, enabling high-precision predictions 
and similarity quantification analysis to provide scientific basis for refined parameter 
adjustments [15]. This integration not only enhances the optimization framework’s 
comprehensiveness but also establishes foundations for more intelligent steel strip production 
control. The optimization results are presented as follows: 
 

Table 9. Pre- vs. post-optimization comparison 

Comparison 
Strip 
steel 

speed 

Heating 
furnace 

temperature 

Soaking 
furnace 

temperature 

Slow cooling 
furnace 

temperature 

Over-aging 
furnace 

temperature 

Rapid cooling 
furnace 

temperature 

Quenching 
furnace 

temperature 

Temper 
mill 

tension 

Pre-
optimization 203 710 653 607 352 64 43 2439 

Post-
optimization 201 710 645 608 355 67 45 2420 

5.4.6. Sensitivity Analysis 
Sensitivity analysis is a method for studying and analyzing the sensitivity of the state or output 
change of a model (or system) to the changes in system parameters or surrounding conditions. 
In the simulated annealing algorithm, conducting sensitivity analysis can help understand the 
influence of different parameters on the algorithm’s performance, thereby guiding how to 
select and adjust these parameters. For example, by analyzing the influence of parameters such 
as the initial value of the control parameter, the attenuation factor, and the number of iterations 
at each temperature value on the algorithm’s convergence speed and the quality of the solution, 
the optimal parameter settings can be determined. In addition, sensitivity analysis can also help 
evaluate the stability and robustness of the algorithm, that is, whether the performance of the 
algorithm will be significantly affected when the parameters change within a certain range. 
In practical applications, whether it is necessary to conduct sensitivity analysis on the 
simulated annealing algorithm depends on the requirements of the specific problem and the 
complexity of the algorithm. If the problem has high requirements for the quality of the solution, 
or the performance of the algorithm is greatly affected by parameters, then conducting 
sensitivity analysis becomes particularly important. Through sensitivity analysis, the optimal 
parameter settings can be found, thereby improving the execution efficiency and convergence 
accuracy of the algorithm. 

6. Analysis of the Advantages and Disadvantages of the Model 

6.1. Advantages of the Model 
6.1.1. Improved Accuracy through Multi-model Integration 
By combining multiple methods such as PCA, Pearson correlation coefficient, random forest, BP 
neural network, and simulated annealing algorithm, the model can comprehensively and 
accurately capture the complex relationships in the production process, improving the 
accuracy of prediction and optimization. 
6.1.2. Meticulous Data Pre-processing 
The model uses linear interpolation and the moving median method to remove outliers and 
conducts dimensionless processing, ensuring the data quality and providing a reliable 
foundation for model construction. 
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6.1.3. Real-time Performance and High Efficiency 
The BP neural network model can quickly respond to changes in production data, enabling real-
time prediction of product quality. Meanwhile, the simulated annealing algorithm 
demonstrates high-efficiency global search ability in complex parameter optimization. 
6.1.4. Intelligent Feature Selection and Optimization 
Feature selection is carried out using the random forest, which automatically extracts the 
features that have the greatest impact on the prediction results. This reduces the complexity of 
the model and improves the computational efficiency. The simulated annealing algorithm 
achieves intelligent optimization of process parameters, enhancing production efficiency and 
product quality. 
6.1.5. Strong Reliability 
Potential error sources are identified and reduced through sensitivity analysis, enhancing the 
stability and reliability of the model. At the same time, the evaluation of the optimization effect 
in combination with the validation set ensures the applicability of the model in actual 
production. 

6.2. Disadvantages of the Model 
6.2.1. High Model Complexity 
The integration of multiple algorithms and technologies makes the model construction and 
debugging process relatively complex, requiring a high technical threshold and professional 
knowledge. 
6.2.2. High Consumption of Computing Resources 
Especially, the BP neural network and the simulated annealing algorithm require a large 
amount of computing resources during the training and optimization processes, which may not 
be suitable for production environments of all scales. 
6.2.3. Insufficiency in Data Timeliness and Real-time Performance 
The performance of the model highly depends on the integrity and quality of the data. Data 
missing or abnormalities will significantly affect the model. In this paper, the quality data of 
cold-rolled products are mostly integrated from historical data and are not updated in real time, 
which limits the ability of online performance prediction. Future research will explore methods 
for real-time data integration and online prediction. 

7. Optimization and Promotion of the Model 

7.1. Optimization of the Model 
7.1.1. Enhancement of Model Generalization Ability 
Although advanced algorithms such as random forest and BP neural network are used in this 
paper for feature selection and model construction, the model may still be restricted by the 
distribution of training data. As a result, when encountering new samples that differ 
significantly from the training data, the prediction performance may decline. Especially in a 
production environment with complex and changeable process parameters, the generalization 
ability of the model needs to be further improved to handle various unknown situations. 
Therefore, it is necessary to introduce more training data and adopt strategies such as 
regularization techniques and dropout to prevent model over-fitting and improve the model’s 
generalization ability. In addition, ensemble learning methods (such as Stacking and Blending) 
can be considered to combine the prediction results of multiple models, further enhancing the 
model’s stability and accuracy. 
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7.1.2. Optimization of Computational Efficiency and Real-time Performance 
Although the BP neural network used in this paper has strong learning ability, its computational 
complexity is relatively high. Especially when the network structure is complex with a large 
number of layers and neurons, the model training and inference speed may be slow, making it 
difficult to meet the requirements of production lines with high real-time performance. 
Therefore, pruning and quantization processing of the BP neural network are required to 
reduce model parameters and computational volume and improve the inference speed. 
Distributed computing frameworks and hardware acceleration technologies (such as GPUs and 
TPUs) can be utilized to accelerate the model training and inference processes. Convolutional 
neural networks (CNNs) can be designed and used to replace fully-connected layers to reduce 
computational complexity. 
7.1.3. Automated Hyperparameter Tuning 
Hyperparameter tuning in this paper is a crucial step to enhance model performance. However, 
the current tuning process often relies on manual experience and trial-and-error methods, 
which may lead to subjective tuning results and may not necessarily find the global optimal 
solution. Therefore, it is necessary to use intelligent optimization algorithms such as Bayesian 
optimization and genetic algorithms for automatic hyperparameter tuning to reduce manual 
intervention and subjectivity. A reasonable hyperparameter search space and evaluation 
strategy should be designed to ensure the effectiveness and efficiency of the tuning process. 
7.1.4. Improving Model Robustness 
Since outliers and noise in the data in this paper have a significant impact on model training, 
although data cleaning and pre-processing have been carried out, the model may still be 
sensitive to some undetected outliers, leading to deviations in prediction results. Therefore, 
more powerful outlier detection and noise suppression techniques are needed to improve the 
model’s robustness. 
7.1.5. Enhancing Model Interpretability 
Although the interpretability of model results can be improved through feature importance 
evaluation in this paper, black-box models such as the BP neural network are still difficult to 
fully explain in terms of their internal mechanisms, which limits operators’ understanding and 
optimization of the model decision-making process. Therefore, more interpretable models such 
as decision trees should be used as baseline models and combined with the BP neural network 
to improve overall interpretability through model integration. Additionally, interpretability 
tools such as SHAP values and LIME should be introduced for post-processing analysis of the 
model to clarify the influence degree and direction of features on prediction results. 

7.2. Promotion and Application of the Model 
7.2.1. Cross-industry Application 
The methods of using machine learning for correlation analysis, feature selection, model 
construction, and optimization in this paper have universal applicability. Therefore, this model 
can be extended to other metal processing, material manufacturing, and industrial production 
fields, such as the production optimization of products like aluminum alloys, copper materials, 
and stainless steel. By adjusting the model input parameters and objective functions, 
customized optimization can be carried out according to different material properties and 
production requirements, thus improving the overall production efficiency and product quality. 
7.2.2. Integration into Intelligent Production Lines 
With the development of Industry 4.0 and intelligent manufacturing, the requirements for the 
intelligence and automation levels of production lines are increasingly higher. This model can 
be seamlessly integrated into existing intelligent production lines and serve as a key component 



Frontiers in Science and Engineering Volume 5 Issue 10, 2025

ISSN: 2710-0588 

 

170 

of the production control system. By monitoring process parameters and product quality data 
in real time, the model can automatically adjust production parameters to achieve intelligent 
control of the production process. This not only reduces human intervention and errors but 
also significantly improves production efficiency and product consistency. 
7.2.3. Training and Education 
The promotion and application of this model also involve the training and education of 
production personnel. Through organizing professional training courses, compiling operation 
manuals, and sharing successful cases, etc., it can help production personnel better understand 
and apply this model. This can not only enhance their professional skills and knowledge level 
but also boost their awareness and confidence in intelligent production. 

8. Conclusion 

This study developed an integrated intelligent prediction and optimization framework for cold-
rolled strip steel hardness by combining PCA, Pearson correlation, random forest, BP neural 
network, and simulated annealing algorithms. The results show that key process parameters-
including carbon content, rapid cooling furnace temperature, and strip dimensions-exert 
significant influence on hardness. The hybrid model achieves a high prediction accuracy of 
97.67%, demonstrating strong generalization and practical applicability. Furthermore, 
simulated annealing effectively identifies optimal parameter configurations that enhance 
product quality and production efficiency. This multi-model collaborative approach not only 
provides a robust solution for the steel industry’s intelligent quality control but also contributes 
to reducing energy consumption and supporting green manufacturing.  
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