
Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

99

Practical	Approaches	to	Developing	High‐performance	Web	
Applications	Based	on	React	

Yiting Gu

Publicis Sapient, 6021 Connection Dr, Irving, TX, 75063, US

Abstract	
This	 article	 takes	 an	 in‐depth	 look	 at	 how	 to	 improve	 the	 performance	 of	 Web	
applications	 based	 on	 the	 React	 framework,	 and	 analyzes	 common	 performance	
bottlenecks,	 including	 single‐page	 application	performance	degradation,	UI	 and	data	
synchronization	complexity,	state	management	challenges,	and	component	rerendering	
issues.	 Some	 strategies	 such	 as	 lazy	 application	 loading,	 interface	 virtualization,	
optimizing	Redux	performance	and	shouldComponentUpdate	are	proposed	to	enhance	
the	response	speed	and	user	interaction	experience	of	React	applications.	This	research	
provides	React	developers	with	practical	performance	optimization	techniques	and	has	
significant	application	value.	

Keywords	
React;	 High	 performance;	 Web	 application;	 Optimization	 strategy;	 Performance	
bottleneck.	

1. Introduction	

As Web applications continue to become more complex, improving performance has become a
major challenge in the programming process. As a popular front-end framework, React is
widely used in building single page applications (SPAs). But when building large applications,
React often faces performance bottlenecks, such as slow load times, frequent rendering, and
data synchronization challenges. This article aims to analyze the common performance
challenges of React applications and give corresponding optimization strategies to help
developers get practical guidance on optimizing the performance of web applications.

2. React's	role	in	high‐performance	Web	development	

As a front-end framework with declarative programming and componentized design at its core,
React plays an integral role in creating high-performance Web applications. Its notable feature
is the use of virtual DOM mechanism, which improves rendering performance by reducing the
operation of actual DOM elements. React can intelligently compare the differences before and
after DOM update, update only the changed part, avoid global refresh, and improve the
response time of the page. The componentized development pattern makes the structure of the
application more modular, which improves code reusability, increases code elasticity, and helps
with performance optimization. In the React framework, its lifecycle management and
asynchronous rendering (i.e. React Fiber architecture) effectively reduce the frequency of page
rendering, but also alleviate the interface latency phenomenon. The tool set around React, such
as React Router and Redux, also brings performance improvements for data processing and
routing switching. Taken together, React, through efficient rendering, componentized design,
and rich ecological support, greatly facilitates developers to create superior performance and
responsive web applications.
React has won the favor of developers with its key features such as virtual DOM, lifecycle
management, and asynchronous rendering, but also gives developers great optimization

Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

100

potential in terms of flexibility and scalability. In the React framework, developers can control
the rendering cycle of components and use React optimization methods such as
shouldComponentUpdate, React.memo, useMemo, and useCallback to avoid unnecessary
component rerendering and further improve performance. React.memo can be based on the
comparison of components before and after props, effectively preventing multiple rendering
when props are unchanged, reducing the rendering burden. With useMemo and useCallback,
the storage of calculation results and functions can be achieved to avoid unnecessary
recalculation in each rendering, which is of great benefit to improving the performance of
scenes with complex logic and frequent rendering. In addition, React has efficient error
handling functions, and the ErrorBoundary component can intercept and process JavaScript
exceptions thrown by sub-components to avoid program crashes.

3. Challenges	in	React	high‐performance	Web	application	development	

3.1. Long	runtime	and	performance	degradation	in	single‐page	applications	
Single page applications (SPAs) rely on JavaScript to update content in real time after the first
page load, eliminating the need for frequent page reloads. As application usage time increases,
especially when application state changes frequently, performance bottlenecks begin to
become apparent. Long-run SPAs can experience performance degradation, especially when
dealing with large data interactions and complex component rendering. As states and
components increase, the rendering time of the page gradually increases, which may cause the
application to be slow and affect the user's operating experience. The rerendering of
components and the continuous accumulation of DOM nodes will increase the rendering
pressure of the browser and affect the flow of the application. Table 1 below shows how the
performance of a single page application varies over time:

Table	1.	Table of single-page application performance degradation issues

Use period Render time
(ms)

Number
of state
changes

The number of times the
component rerenders

Page response
speed (seconds)

0-1Hour (s) 50 100 20 0.1
1-3Hour (s) 100 300 60 0.3
3-6Hour (s) 200 600 120 0.6

6More than hours 500 1200 240 1.5

3.2. Complexity	of	UI	and	data	synchronization	
In React applications, synchronizing the interface with data is a complex challenge, especially
in multi-component and state management frameworks such as Redux. When multiple
components depend on the same data source, frequent state changes can cause unnecessary
rerendering that affects performance and may cause flickering or inconsistent displays. At the
same time, the diverse requirements of different components for the same data also make
synchronization more complex, especially when dealing with large amounts of data or frequent
updates. Without the right optimization strategy, the responsiveness and smoothness of your
app can be compromised. Table 2 below shows how UI rendering and performance changes
under different data synchronization strategies, reflecting the challenges posed by the
complexity of synchronization:

Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

101

Table	2.	Comparison of UI rendering time and performance under different data
synchronization strategies

Synchronization
strategy

Data update
frequency

UI Render time
(ms)

Performance impact
(response delay)

Frequent
synchronization (no

optimization)
high 180 high

Optimized using
useEffect

In the 120 In the

Optimize with Redux low 80 low

	

3.3. Performance	Bottlenecks	in	Status	Management	
Dealing with state can be particularly tricky in the face of complex React applications. Especially
when building a large application, the state interaction between components is frequent, which
is easy to cause unnecessary rendering and affect performance. For example, if there are many
subcomponents that depend on a state, a change in that state will cause updates for all related
components, even if the actual rendering of those components is not affected by the state. This
problem is especially prominent in large projects, and the efficiency and accuracy of state
processing are directly related to the response speed of the program and the interactive
experience of the user.
Redux, as a popular state management framework, does a great job of managing application
state, but its performance limitations are equally obvious. When the dispatch operation is
triggered frequently, the global state tree is fully updated, and the mapStateToProps function
transmits state changes to the individual components, causing a total recalculation and
rendering. This repetitive rendering process consumes computing power and can make the
user interface unresponsive. Especially when the component structure is complex and the state
level is various, the performance bottleneck is more significant. Worse, if the state structure is
too nested, a change in state can spread to multiple components, and the re-rendering of those
components can cause more components to update, creating an inefficient feedback loop.
In addition, while hooks like React's useState and useReducer provide convenience in state
management, they can still cause unnecessary rendering due to frequent state changes. When
your application is dealing with large amounts of data or frequently updating the UI, over-
reliance on this mode of state change can significantly degrade your application's performance.
During React development, it is critical to explore how to efficiently manage state and optimize
updates to reduce rerendering of unrelated components.

3.4. Overfrequency	of	component	rerendering	
During the development of React, overrendering of components was a key factor causing
performance issues. Every time a component's state or props change, React will perform a
rerendering operation, and if this operation is too frequent, especially when building complex
interfaces or large applications, it will significantly slow down the performance of the
application. Frequent rendering will occupy a large amount of computing resources and
memory, but also reduce the interactive reaction speed of the user interface, affecting the final
quality of the experience. Overrendering can occur for a variety of reasons, including
unnecessary state updates, unnecessary child component updates due to parent component
rerendering, and incorrect use of setState and useEffect. Table 3 below shows the performance
impact of different component render frequencies:

	

Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

102

Table	3. Effects of component rerender frequency on performance
Component type Render frequency Performance impact

High-frequency update
components high Significant decline

Low-frequency update
components low Good performance

Unnecessary rerendering high Serious performance
degradation

4. React	Practice	Optimization	Strategy	for	High‐Performance	Web	
Application	Development	

4.1. Implementation	of	lazy	loading	and	on‐demand	loading	
Lazy loading and on-demand loading are key strategies for optimizing the performance of React
applications, especially when building large Web applications. The essence of these two
strategies is to reduce the resource burden of startup loading, and speed up the display
efficiency of the page by asynchronously loading the code and resources in a timely manner.
Lazy loading is to delay the loading time of components and only perform loading when
components must be displayed in the view. This can prevent all resources from being loaded at
once and reduce the loading time of the home page. Through the user's operation or page needs
to introduce the corresponding module or page content in a timely manner, this on-demand
loading avoids the full loading of the entire application. With this strategy, developers are able
to subdivide the application into many micro-modules, and the corresponding code is activated
and loaded only when the user is actually interacting with the page, which significantly reduces
the loading time at app launch and optimizes the user's operating experience. To quantify the
optimization effect of lazy versus on-demand loading, the following formula can be used:

T୭୮୲୧୫୧୸ୣୢ ൌ T୧୬୧୲୧ୟ୪ ൅ ∑ T୪ୟ୸୷౟

୬
୧ୀଵ (1)

Where, T୭୮୲୧୫୧୸ୣୢ is the total load time after optimization, T୧୬୧୲୧ୟ୪ is the initial load time without
optimization, T୪ୟ୸୷౟

 is the loading time of the i th lazy load module, and n is the number of
modules that need to be lazy loaded. With these strategies, React applications can selectively
load a large number of unnecessary resources, reduce redundant network requests and
rendering burdens, improve page loading efficiency and response speed, and enhance user
access experience. This combination of on-demand and lazy loading enhances performance and
reduces application resource consumption, ensuring that React applications operate smoothly
under heavy load conditions.

4.2. Dynamic	rendering	and	virtualization	technology	
Dynamic rendering and virtualization are essential to optimize the performance of React
applications, especially when dealing with large data sets or building complex user interfaces.
This technology can load and display page components in real time according to user
interaction, effectively avoiding unnecessary DOM operations, and greatly improving rendering
efficiency. Virtualization technology also has the same wonderful, it only for the user is
currently visible part of the interface rendering processing, the rest of the need to load or clear
from the memory, so that both reduce the rendering burden, reduce memory consumption, to
achieve significant performance enhancement. In the react framework, virtual rendering is
often performed with the help of third-party libraries such as React-Window or React-

Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

103

Virtualized to improve performance. These libraries can efficiently calculate the elements in the
current viewport and update the display in real time based on the user's scrolling actions and
view size, thereby reducing the unnecessary immediate loading of a large number of DOM
nodes. When dealing with long sequences, continuous scrolling, or complex data lists,
virtualization technology is particularly suitable, it can significantly reduce the total number of
elements required by the browser to draw, relieve browser pressure, and speed up the
response of the page. To quantify the impact of virtualization on performance, the optimization
can be evaluated using the following formula:

T୭୮୲୧୫୧୸ୣୢ െ T୧୬୧୲୧ୟ୪ െ ሺ∑ T୰ୣ୬ୢୣ୰ୣୢ

୫
୧ୀଵ ሻ (2)

Where T୭୮୲୧୫୧୸ୣୢ is the total render time after optimization, T୧୬୧୲୧ୟ୪ is the total render time
without optimization, T୰ୣ୬ୢୣ୰ୣୢ is the render time of each rendered visual area element, and m
is the actual number of elements rendered during each view update. With these techniques,
React applications can significantly reduce the number of unnecessary renderings to optimize
page performance and user experience. When dealing with large amounts of data or building
complex page scenes, these techniques can significantly increase the efficiency of rendering.

4.3. Optimizing	Redux	Performance	
As React applications continue to expand, performance issues tend to become more prominent
when Redux is used for state management. As the application grows in size, status updates are
frequent and accompanied by unnecessary component rendering, which can make the
application less responsive. This is especially true when many components simultaneously
depend on a single state. To overcome these challenges, it is necessary to optimize Redux's
status update process, reduce the number of redundant redraws, and increase the speed of data
processing. For example, components are automatically re-rendered whenever state changes,
but sometimes this rendering does not result in any substantial change to the user interface. To
avoid unnecessary rendering, you can optimize component update frequency with React.memo
or shouldComponentUpdate to prevent unnecessary interface overloading. Furthermore,
building a memorized selector with the reselect library can reduce redundant computation
tasks and improve application performance by ensuring that recalculations and renderings are
only performed when the relevant data is updated. At the level of optimized data storage, the
state update process can be made more efficient by splitting the state and reducing the size of
the data involved in each state update. In addition, batch updates can also greatly improve
performance, because it prevents separate updates from being triggered for each distribution
operation, reducing the frequency of rendering. Assuming the time required for each render is
T_render, the number of components is N, and the number of updates is U, then the total render
time T_total is:

T୲୭୲ୟ୪ ൌ T୰ୣ୬ୢୣ୰ ൈ N ൈ U (4)

After optimization, the render times are reduced to N', the update times are reduced to U', and
the optimized render time is:

T୲୭୲ୟ୪ ୭୮୲୧୫୧୸ୣୢ ൌ T୰ୣ୬ୢୣ୰ ൈ Nᇱ ൈ Uᇱ (5)

Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

104

The optimized rendering time is significantly reduced, resulting in improved application
responsiveness and user experience.

4.4. shouldComponentUpdate	Should	be	Used	to	optimize	rendering	
In React framework, shouldComponentUpdate is an important means to improve optimized
rendering. This method gives the developer the discretion to determine whether a component
needs to be redrawn to prevent unnecessary updates from affecting program performance.
React typically performs redraws whenever a component's props or state changes, although
some changes do not necessarily affect the component's user interface.
shouldComponentUpdate allows developers to improve application performance by avoiding
unnecessary rendering. This function takes nextProps and nextState as input arguments and
outputs a result of type Boolean. When the function returns a true value, the component
performs a redraw. Conversely, if a false value is returned, the component skips the redrawing
process. For performance optimization purposes, the shouldComponentUpdate function
should return true only when a component's properties or state have actually changed to
reduce unnecessary redraws.
In this way, developers can reduce unnecessary rendering, reduce computing resource
consumption, and improve page responsiveness. shouldComponentUpdate should be used to
calculate the difference between the optimized render time and the initial render time. The
optimization formula is as follows:

T୭୮୲୧୫୧୸ୣୢ ൌ T୧୬୧୲୧ୟ୪ െ ሺ∑ ∆T୰ୣ୬ୢୣ୰ୣୢ

୫
୧ୀଵ ሻ (6)

Where T୭୮୲୧୫୧୸ୣୢ represents the optimized rendering time, T୧୬୧୲୧ୟ୪ represents the unoptimized
rendering time, ∆T୰ୣ୬ୢୣ୰ୣୢ is the time reduced per rendering, and m is the number of actual
updates. With this strategy, the performance of React applications can be significantly
improved.
Conclusion: The core of improving the performance of React Web applications is to reduce
unnecessary rendering and speed up page response. Adopting lazy loading, virtualization, and
optimized state management can help prevent performance bottlenecks and increase
operational efficiency. At the same time, moderately adjust the frequency of component
updates, and adopt the appropriate performance optimization strategy, so that the application
can maintain a smooth experience even when dealing with complex business and large amounts
of data. As the React technology ecosystem continues to improve, more advanced technologies
are expected to emerge to drive performance optimization.

References	

[1] Yamanaka I .Measurement and Experimental Procedures in Electrosynthesis Reaction for Low
Molecular Weight Reactants[J].Denki Kagaku, 2022, 90(4):351-356.

[2] Zhang J , Yin Q , Hu W ,et al.EPA : The effective pipeline architecture for CNN accelerator with high
performance and computing efficiency based on FPGA[J].Concurrency and Computation Practice
and Experience, 2021(2).

[3] Xu H , Wang C R , Berres A ,et al.Interactive Web Application for Traffic Simulation Data Management
and Visualization:[J].Transportation Research Record, 2022, 2676(1):274-292.

[4] Qiu Y , Yin W , Wang L .A High-Performance and Scalable NVMe Controller Featuring Hardware
Acceleration[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems: A
publication of the IEEE Circuits and Systems Society, 2022(5):41.

Frontiers	in	Science	and	Engineering	 Volume	5	Issue	2,	2025

ISSN:	2710‐0588	
	

105

[5] Zhang H , Liu Z , Hasan S ,et al.Joint optimization strategy of heterogeneous resources in multi-MEC-
server vehicular network[J].Wireless Networks, 2022, 28(2):765-778.

[6] Min B ,Ly H .How do gold and oil react to the COVID-19 pandemic: A review[J].Energy &
Environment, 2023,34(7):2876-2902.

[7] Qin M H ,Takayuki K ,Michael C , et al.Reacting Mn3O4 powders with quaternary ammonium
hydroxides to form two-dimensional birnessite flakes[J].Ceramics International, 2023, 49(21):
33537-33545.

