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Abstract	
Shale	gas	is	generally	faced	with	the	problem	of	bottom‐hole	accumulation	in	the	middle	
and	 late	stage	of	exploitation.	Foam	drainage	gas	production	 technology	 is	one	of	 the	
means	 to	 solve	 the	 problem	 of	 bottom‐hole	 accumulation	 and	 restore	 the	 normal	
production	 of	 gas	Wells.	When	 the	 foam	mixture	 reaches	 the	 ground,	 it	needs	 to	be	
defoamed.	 At	 present,	 the	 defoaming	 effect	 is	mainly	 evaluated	 by	 regular	manual	
sampling	 from	 the	 separator	 sampling	 port.	 In	 order	 to	 reduce	 the	work	 intensity,	
realize	 automatic	 detection	 and	 improve	 the	 detection	 accuracy,	 a	 set	 of	 anti‐foam	
detection	system	based	on	machine	vision	was	developed	and	field	test	was	carried	out.	
The	results	show	that:	The	defoaming	detection	system	meets	the	requirements	of	field	
conditions,	and	the	system	has	strong	stability	and	reliability;	The	defoaming	detection	
model	based	on	DeepLabV3+	has	high	accuracy,	and	the	processed	images	are	similar	to	
the	 manual	 sampling	 results;	 The	 minimum	 difference	 between	 the	 foam	 height	
measurement	system	and	the	manual	measurement	is	0mm,	the	maximum	difference	is	
8.60mm,	and	the	data	with	the	difference	of	5mm	and	below	account	for	94.4%,	that	is,	
the	accuracy	rate	reaches	94.4%.	It	 is	concluded	that	the	development	and	test	of	the	
defoaming	 detection	 system	 has	 verified	 the	 feasibility	 of	 using	 machine	 vision	
technology	 for	defoaming	detection,	and	has	practical	 significance	 for	promoting	 the	
intelligent	development	of	the	defoaming	detection	process	and	improving	the	efficiency	
of	shale	gas	extraction.	
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1. Introduction	

In the process of shale gas development, the theory of "artificial gas reservoir" is adopted to 
release shale gas through fracturing technology. If the fracturing fluid is not discharged in time, 
liquid will form in the wellbore to hinder gas flow, and in serious cases, it may lead to flooding 
and production suspension[1-3]. In order to solve this problem, it is necessary to adopt drainage 
gas production technology. Among them, the foam drainage gas production process has become 
one of the widely used technologies due to its advantages of making full use of the formation's 
own energy to achieve lifting, low cost, quick response, simple operation and strong 
adaptability[4-5]. In this process, a large number of low-density water-containing foams are 
produced by injecting bubble drainage agents into the place where the liquid accumulates or is 
likely to produce liquid accumulates under the disturbance of air flow. These foams can use the 
formation's own energy to rise to the surface with the air flow, thereby effectively draining the 
bottom-hole fluid[6-8]. After the foam fluid reaches the ground, it must be defoamed to achieve 
effective separation of liquid and gas. Insufficient defoaming will lead to the failure of booster 
equipment and the deterioration of pipe network performance. Excessive addition of defoamer 
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increases the cost and the difficulty of wastewater treatment[9-10]. Therefore, in actual operation, 
it is necessary to determine the appropriate amount of defoamer according to the specific 
situation of the foam fluid, which requires continuous detection of the defoamer effect in daily 
production, and dynamic adjustment of the defoamer dosage. 
At present, the method of testing the effect of defoaming in the field relies on the operator to 
collect samples from the sampling port of the separator regularly, observe the foam height after 
standing, and adjust the filling amount of the automatic filling device of defoaming agent 
according to the existing evaluation standards. This method is not only time-consuming and 
laborious, but also increases the work burden of operators due to the wide distribution of gas 
Wells, and may also have subjective errors. In order to improve inspection efficiency and 
accuracy, researchers are committed to developing effective wellhead foam detection 
technology to achieve more accurate management and optimization of defoamer filling. Liang 
Zheng et al. [11] proposed a variety of anti-foaming effect detection schemes and evaluated their 
feasibility. Guo Liang et al. [12-13] designed a foam content monitoring device based on the 
difference in infrared reflectivity, which can distinguish between gas, foam and liquid in the 
pipeline, and verified its effectiveness and reliability through field tests. Although most of the 
current research focuses on the use of infrared detection principle for detection, and has 
achieved certain results, however, with the continuous improvement of detection accuracy and 
environmental adaptability requirements, infrared methods in some application scenarios 
gradually show its limitations. Based on this background, this research turns to exploring an 
innovative solution - using machine vision technology for inspection. This scheme can not only 
provide more intuitive and detailed image information, but also has higher degree of 
automation and processing efficiency. 
This paper designs and implements a set of wellhead foam defoaming detection system based 
on machine vision technology, and verifies the feasibility and detection accuracy of the system 
through field tests. The purpose of this study was to explore the potential of machine vision in 
improving the efficiency and accuracy of defoaming operations, and to provide a new 
perspective for defoaming operations in bubble drainage Wells. 

2. Architecture	of	Defoaming	Detection	System	

2.1. Overall	test	system	scheme	
Based on the Internet of Things technology, the anti-foam detection system of bubble drainage 
well adopts a three-layer architecture design, including the perception layer, the transmission 
layer and the application layer, as shown in Figure 1. First, the sensing layer uses machine vision 
technology[14] to collect the image of the detection sample through the camera in the defoaming 
detection device, and uses the Raspberry PI for image processing to accurately measure the 
foam height. For "one well, one strategy" managed platform Wells, comprehensive inspection 
can be ensured by equipping each well with an independent sampling device. Secondly, the 
transport layer realizes wireless data transmission based on 4G cellular network, and securely 
transmits the image and original image processed by Raspberry PI to the cloud server through 
HTTP protocol. Finally, in the application layer, the foam height data and the original acquired 
image obtained from the perception layer are displayed on the Web page in a visual way, and 
the detection data is stored in the MySQL database to provide a strong basis for the subsequent 
optimization of the use of defoamer. 
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Figure	1.	Overall scheme of defoaming detection system at the foam drainage wells 
 

2.2. DeepLabV3+	image	semantic	segmentation	model	
According to the evaluation criteria of defoaming effect in the "Management Measures for 
Bubble Drainage Operation in Southwest Gas Production Plant", the test water sample should 
be observed after standing for 2 minutes. After standing, the water sample is divided into foam 
layer and liquid layer. Traditional image processing has problems of insufficient real-time 
performance and segmentation detail loss in defoaming detection. In order to achieve accurate 
image recognition of foam height, this study builds a defoaming detection model based on 
DeepLabV3+, and realizes fine identification of foam layer boundary through codec-decoding 
architecture and multi-scale feature fusion mechanism[15-16], as shown in Figure 2. In this model, 
the MobileNetV2 lightweight network is used as the backbone of the encoder, and its deep 
separable convolution structure can significantly reduce the computational complexity while 
ensuring the feature extraction capability, and effectively solve the response speed bottleneck 
in real-time detection scenarios. The encoder first extracts features from the acquired images, 
which are divided into two parts: one contains shallow features and is transmitted directly to 
the decoder; The other part is fed into the cavernous space convolution pool Pyramid (ASPP). 
In order to solve the multi-scale feature extraction problem caused by the dynamic change of 
foam layer morphology over time, the model introduces the convolution pyramid of void space 
into the encoder. By setting the convolution layers with expansion rates of 6, 12 and 18 in 
parallel, the multi-scale semantic features under different receptive fields are captured, and the 
context information obtained by global average pooling is fused. Form high-dimensional 
representations that contain both macroscopic and microscopic features. In the decoding stage, 
the feature pyramid fusion strategy is used to concatenate the high-level semantic features up-
sampled by 4x bilinear interpolation with the shallow detailed features optimized by 1×1 
convolution channel. After eliminating aliasing effect by 3x 3 convolution, the secondary up-
sampling is restored to the original resolution. Finally, based on the pixel-level segmentation 
results, the spatial mapping model of image pixel coordinates and beaker calibration scale is 
established to accurately calculate the actual height of the foam layer. The distribution of foam 
layer is visually displayed by false color overlay visualization technology, which provides 
reliable technical support for the evaluation of defoaming effect. 
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Figure	2.	DeepLabV3+ network model  

2.3. Detection	device	scheme	
The modular antifoam testing system designed according to the actual working condition of the 
site adopts the layered structure design, which is divided into three layers: upper, middle and 
lower. FIG. 3 shows the device diagram of the defoaming detection system. The upper layer is 
equipped with electronic component modules including Raspberry PI, transformer, 4G 
expansion board (SIM7600X), MOS field effect and relay; The middle layer is equipped with a 
sampling assembly composed of an electric ball valve, a one-way throttle valve, a connecting 
pipe and corresponding connecting accessories, which are placed in the same explosion-proof 
box and isolated from the upper layer by explosion-proof mud and insulation board; The lower 
level is used for image acquisition and contains the camera, light source, sampling beaker and 
liquid discharge pump, which are arranged in two separate explosion-proof chambers. When 
the system is running, through the pre-set one-way throttle opening, when the collection 
command is received, the Raspberry PI starts the relevant procedures, the electric ball valve 
opens in response, and the foam mixture flows into the sampling beaker. Then, after standing 
for a period of time according to the anti-foam evaluation standard, the light source in the lower 
layer is turned on, the camera takes images and transmits data, and finally the liquid in the 
sampling beaker is discharged through the drainage pump to complete a single collection. 
Because of its small size, economy and easy development, Raspberry PI serves as the control 
core in this study, which is used to realize the operation of the detection device according to the 
preset program and image processing of the collected data. It then transmits the processed 
image and resulting data to a Web page for real-time monitoring and analysis. In addition, the 
device adopts the USB camera module suitable for the Raspberry PI Linux system and the 
normally closed electric ball valve to ensure the safety and convenience of operation. At the 
same time, the light source and the camera are distributed at a 120° Angle, and the light source 
is 10cm away from the beaker to achieve the best detection effect. 
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Figure	3.	Device diagram of defoaming detection system 

3. Laboratory	Experiment	

3.1. Experimental	flow	scheme	
Based on DeepLabV3+ network model, an experimental flow of foam height detection is 
designed. First, a laboratory test is conducted using a detection device to obtain foam images 
and build a data set. The data set is divided into the training set and the validation set in a ratio 
of 9:1. The training set is used to train the defoaming detection model to achieve effective 
separation of foam layer and liquid layer, and the stability and accuracy of the model are 
evaluated by validation set. After the foam layer is divided, the edge of the foam layer is 
determined by pixel marking method. Finally, the final foam height is obtained by converting 
the pixel distance in the image into the actual distance. 

3.2. Data	set	construction	
Labelme labeling tool was used to label the foam image, and the region in the image was divided 
into foam layer and liquid layer labels. When this is done, the saved image and the resulting 
json file are converted to a dataset containing the original image and labels by the 
json_to_dataset conversion tool. In the laboratory experiment, a total of 600 images, covering 
different foam heights and beaker cleanliness, were produced and labeled to complete the 
construction of the dataset. 

3.3. Experimental	Measurement	
The data set is divided into the training set and the validation set in a ratio of 9:1. By means of 
transfer learning, the weights pre-trained on ImageNet data set are used to initialize the model, 
accelerate the training speed and improve the performance. Hardware configuration includes 
Intel Core i5-9300H CPU and NVIDIA GeForce 1650 GPU, software environment Windows10 
system, running PyTorch1.9.0+Python3.8. The models were trained with 50 epochs, a batch 
size of 8, an SGD optimizer, an initial learning rate of 0.007, and a cross-entropy loss function. 
The model was trained according to the above configuration parameters, and two semantic 
segmentation indexes, namely mean pixel accuracy (mPA) and mean crossover ratio (mIoU), 
were used to evaluate the model performance[18]. The results of mIoU experiment were 96.93% 
and mPA experiment 98.71%, indicating a high accuracy. 

3.4. Experimental	results	and	analysis	
The traditional image processing and deep learning detection methods are compared, and foam 
images with clean and impurities are selected. As shown in Figure 4, the results obtained by the 
above two methods are partially clean beakers and beakers with impurities interference. It can 
be seen that when the inner wall of the beaker is clean and tidy and there is no interference of 
impurities, the two methods can detect the edge of the foam layer more accurately. When the 
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inner wall of beaker is polluted with impurities, the traditional image processing method has 
poor effect on the edge recognition of foam layer. The results show that the deep learning 
method can accurately identify the boundary of the foam layer, indicating that the defoaming 
detection model based on DeepLabV3+ network has high reliability and accuracy in defoaming 
detection. 

 

 
Figure	4.	Comparison of experimental results 

 

4. Field	Experimentation	

4.1. Test	process	and	results	
The field test process was designed according to the field blister operation system. Since 
electronic equipment is prohibited in the open air environment of the gas production site, all 
tests should be assisted by two groups AB. Group A is located at the sampling point and is 
responsible for manual sampling and confirming the operating status of the detection device. 
Group B is located in the RTU control cabinet and is responsible for monitoring the normal 
operation of the system and model optimization. Specific experimental steps are as follows: 
1) Team B in the RTU control cabinet starts the testing procedure and records the relevant data, 
and indicates Team A in the RTU control cabinet to take samples through beakers; 
2) After the completion of sampling, set the sampling beaker to rest. After 2 minutes, the staff 
of Group B in the RTU control cabinet shall signal the staff of Group A in the RTU control cabinet 
to complete the reading and record the foam height sampled by the beaker; 
3) Wait for the next sampling instruction from Group B of RTU control cabinet; 
4) Repeat the above test steps 1-3; 
5) Extract the foam height data obtained by the detection system and make a comparative 
analysis with the manual sampling records. 

4.2. Interpretation	of	result	
1) Trend analysis of system detection and manual measurement data 
Through the statistical analysis of 180 groups of foam height data from the detection system 
and the foam height data recorded by manual sampling, the comparison curve is obtained. It 
can be seen that the trend of foam height data obtained by the detection system is basically the 
same as that obtained by manual sampling, indicating that the detection system can accurately 
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reflect the actual situation on the site and the detection system is feasible. The statistical curve 
between the detection system and the manual detection of foam height is shown in Figure 5. 

 

	
Figure	5. Statistical curve of foam height between detection system and manual sampling 

 
2) Analysis of the difference between system detection and manual measurement data 
In order to further evaluate the accuracy of the detection system, the difference between the 
foam height sampled by the detection system and the foam height data obtained by manual 
sampling was analyzed. If the difference between the detection system and the manual 
detection is less than 5mm, it is considered that the detection system value can approximately 
replace the manual detection. The difference curve of foam height between the detection 
system and manual detection is shown in Figure 6. As can be seen from the figure, the minimum 
height difference of the foam layer is 0mm, and the maximum height difference is 8.60mm. 
Among them, there are 170 groups of data whose height difference of the foam layer is 5mm or 
below, accounting for 94.4% of the total sample. According to the evaluation criteria of the field 
defoaming effect, the detection is considered accurate if the difference of foam height is 
controlled within 5mm or below. As a result, the accuracy of the detection system was 94.4%. 

 

 
Figure	6.	Difference curve of foam height between detection system and manual sampling 
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5. Conclusion	and	Suggestion	

1) The developed antifoam detection system has no mechanical failure, good sealing 
performance, meets the requirements of on-site explosion-proof, stable data transmission, and 
real-time data results are displayed at the front end, meeting the actual operating conditions. 
2) The defoaming detection model based on DeepLabV3+ can effectively achieve image 
segmentation between foam layer and liquid layer and accelerate the response speed of 
obtaining detection results. The results show that the mIoU and mPA of the model are 96.83% 
and 98.71% respectively, which proves that the model has high accuracy. 
3) Field tests were carried out and 180 sets of data collected were analyzed. The results showed 
that the minimum difference between the system detection and manual measurement of foam 
height was 0mm, and the maximum difference was 8.60mm. The proportion of data with a 
difference of 5mm or less was 94.4%, that is, the accuracy rate reached 94.4%, and the detection 
accuracy was high.  
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