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Abstract	

Detection	 of	 small	 object	 Carbonates	 poses	 a	 challenging	 task,	 primarily	 due	 to	 the	
minuscule	 nature	 of	 Carbonates	 making	 thcem	 difficult	 to	 distinguish	 from	 the	
background.	Traditional	methods	often	struggle	when	faced	with	these	small	Carbonates,	
as	 their	 scale	 is	 small	 and	 they	 exhibit	minimal	 differences	 from	 the	 background,	
resulting	in	challenges	in	accurate	detection	and	classification.	To	address	this	issue,	this	
study	 proposes	 an	 Geological	 small	 object	 Carbonate	 detection	 algorithm	 based	 on	
spatial	attention	combined	with	self‐attention	mechanisms.	This	algorithm	first	utilizes	
spatial	attention	 to	assist	 the	model	 in	 focusing	on	 the	regions	of	 interest	containing	
small	 object	 Carbonates,	 thereby	 reducing	 background	 interference	 and	 increasing	
attention	towards	small	object	Carbonates.	Subsequently,	the	self‐attention	mechanism	
is	 employed	 to	 capture	 long‐range	 dependencies	 across	 the	 entire	 image,	 aiding	 in	
understanding	 the	relationship	between	Carbonate	regions	and	 the	background,	 thus	
facilitating	 better	 differentiation	 between	 Carbonates	 and	 background.	 Finally,	 the	
proposed	algorithm	 is	evaluated	on	 the	public	 small	object	dataset	TT‐100k	and	 the	
Geological	Carbonate	dataset	NEU,	respectively.	Experimental	results	demonstrate	that	
compared	to	the	baseline	model,	the	proposed	algorithm	achieves	an	improvement	of	
2.4%	in	small	object	average	precision	(APsmall)	and	3.2%	in	overall	average	precision	
(AP0.5)	at	IoU=0.5	on	the	TT‐100k	dataset;	and	an	improvement	of	1.5%	in	APsmall	and	
1.8%	in	AP0.5	on	the	NEU	dataset.	
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1. Introduction	

In modern society, Geological products ranging from aircraft wings to semiconductor chips are 
ubiquitous. Geological Carbonate detection, aimed at identifying various appearance flaws in 
Geological products, is one of the essential technologies for ensuring product quality and 
maintaining production stability. Traditional Carbonate detection methods, relying on manual 
inspection, are costly, inefficient, and struggle to cover large-scale quality inspection demands. 
In recent years, with the rapid advancement of artificial intelligence, Geological Carbonate 
detection algorithms based on deep learning techniques have made significant progress. These 
methods, by leveraging deep learning, can reduce the cost of traditional manual inspection, 
improve detection accuracy and efficiency, and thus play a vital role in smart manufacturing. 
Consequently, they have emerged as a burgeoning research focus in the field of computer vision. 
Widely applied in various production scenarios such as object detection in manufacturing 
workshops and Geological action recognition, Geological Carbonate detection faces numerous 
challenges compared to general object detection tasks. One of the primary challenges is the 
small scale of Carbonates. Due to their small size and complex morphology, small Carbonates 
are often challenging to accurately identify by the naked eye or traditional detection methods. 
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Therefore, Geological small object detection algorithms typically utilize advanced image 
processing techniques and deep learning models to capture and analyze high-resolution images 
of products, enabling precise detection and localization of minute Carbonates. 
Based on the aforementioned analysis, this paper proposes the Small Object Area Perception 
(SOAP) module, which combines spatial attention and self-attention mechanisms. The spatial 
attention mechanism helps the model focus on the regions of interest containing object 
Carbonates, thereby reducing background interference and increasing attention towards small 
object Carbonates. Meanwhile, the self-attention mechanism captures long-range dependencies 
across the entire image, aiding in understanding the relationship between objects and 
background and facilitating better differentiation between Carbonates and background. The 
main contributions of this paper can be summarized as follows: 
(1) The proposal of the SOAP module and its integration into the YOLOX baseline model, 
improving the detection accuracy of small object Carbonates in the object detection model. 
(2) To validate the effectiveness of the proposed method, experiments are conducted on the 
publicly available TT-100k dataset and the NEU dataset. Experimental results demonstrate that 
on the TT-100k dataset, the proposed method improves the small object average precision 
(APsmall) by 2.4% and the overall average precision (AP0.5) by 3.2%. On the NEU dataset, the 
proposed method enhances APsmall by 1.5% and AP0.5 by 1.8%. 
The overall structure of this paper is as follows: The second part provides a comprehensive 
review of current research on Geological small Carbonates. The third part elaborates on the 
details of the proposed method. The fourth part presents the experimental results of the 
proposed method on the public TT-100k dataset and NEU dataset. Finally, the fifth part 
provides a systematic summary of this paper and discusses future work. Organization of the 
Text. 

2. Related	Works	

2.1. Small	Object	Detection	Algorithms	in	General	Scenes	
In general scenes, small object detection has been an important problem in the field of 
computer vision. Small objects refer to objects in images or videos that are relatively small in 
size and area. Compared to conventional object detection [13][14][15][16], small object 
detection is more challenging because they often have lower pixel density and complex 
background environments, making them easy to ignore or misclassify. Reference [17] proposed 
an H-DETR hybrid detector based on Transformer and enhanced it for dense small objects, 
resulting in an accurate and efficient algorithm model. [18] Used the Swin-Transformer [19] to 
upsample image features and changed the size of the sliding window to adapt to small object 
objects. The experimental results show that this method combines the bottleneck of Swin-
Transformer with CenterNet, improving the detection accuracy of small objects. [20] Proposed 
an algorithm based on deep learning, HCF-Net. This method significantly improves the 
performance of infrared small object detection through multiple practical modules. [21] 
Enhanced the perception of small objects by adding a small object detection layer, improving 
the performance of locating and recognizing small objects. [22] Proposed a new detection 
model, IUDet, which transfers the features of the scale dimension to the spatial dimension to 
enhance information interaction. [23] Effectively improved the detection accuracy of small 
objects in remote sensing images based on context information and attention mechanism. [24] 
Proposed a model based on YOLOF, which can improve the accuracy of small object detection 
when the object scale changes. [25] Proposed a lightweight object detection algorithm for small 
object detection based on the YOLOv8 algorithm, which improves the accuracy of small object 
detection through two custom key strategies. 
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2.2. Carbonate	Detection	Algorithms	in	Geological	Scenes	
Unlike small object detection in general scenes, Carbonates in Geological scenes typically 
exhibit subtle or complex characteristics, making it difficult to distinguish between Carbonates 
and backgrounds. In contrast, small objects in general scenes usually have obvious appearance 
features and are relatively easy to detect and classify. Reference [26] proposed a multi-
attention fusion mechanism, which alleviates the problem of unclear Carbonate features and 
enhances the ability of feature extraction. [27] Proposed a new automatic Carbonate detection 
algorithm. This algorithm uses a Gaussian mixture model to automatically divide the 
distribution of positive and negative samples based on similarity scores, effectively detecting 
Carbonates. [28] Utilized a multi-head self-attention (MHSA) as an independent attention block 
to enhance the feature extraction capability of the backbone network, improving the detection 
accuracy of Carbonates. [29] Designed a multi-scale segmentation head based on dynamic 
kernels, which can perceive Carbonate features in advance, fuse multi-scale Carbonate 
information, and enhance its ability to identify Carbonate information. [30] Used residual 
networks to divide VGG-16 into different residual modules, reducing the number of parameter 
learning iterations in deep residual networks to meet the real-time requirements of product 
appearance Carbonate detection. [31] Constructed a hybrid deep neural network model based 
on MobileNetv2 [32], YOLOv4 [33], and Openpose [34] to detect Geological small objects. [35] 
Introduced a depth information feature fusion module into the YOLOv7 [36] algorithm, thereby 
improving the model's detection accuracy of small object Carbonates. [37] Proposed the AENet 
model, which integrates input features at different levels to enhance the representation of 
Carbonate details. 

3. Method	

3.1. Overall	network	architecture	
The overall architecture of the network is illustrated in Figure 1. Yolox-nano [38] model was 
chosen as the baseline model for this study. The selection of Yolox as the baseline model is 
primarily due to its excellent balance between speed and accuracy. Moreover, the Yolox model 
demonstrates outstanding versatility and scalability, making it applicable across various 
Geological scenarios and product categories. Its simple yet flexible network architecture 
enables easy integration into existing Geological production processes. While Yolox performs 
well in detecting objects of general scales, there are still limitations when detecting small object 
Carbonates. Geological Carbonates often exhibit subtle and complex characteristics, making it 
difficult to distinguish them from the background. Therefore, this study integrates spatial 
attention and self-attention mechanisms to design the Small Object Area Perception (SOAP) 
module, aiming to enhance the model's perception of small object Carbonates and prevent them 
from being treated as background noise by the model. This approach aims to improve the 
performance and reliability of the model in detecting small object Carbonates. 

3.2. Small	Object	Area	Perception	module	(SOAP)	
Conventional object detection models often encounter challenges when dealing with small 
objects. Firstly, small objects possess limited information due to their small size, making them 
susceptible to being obscured by background noise, thus rendering them difficult to detect 
effectively. Secondly, their small size results in a relatively small number of pixels in the image, 
leading to indistinctive feature representations and making it difficult to distinguish them 
clearly from the background. Therefore, to address these challenges, this study combines 
spatial attention mechanisms and self-attention mechanisms to design the Small Object Area 
Perception (SOAP) module, aiming to enhance the detection performance of small object 
Carbonates. As illustrated in Figure 2 below. 
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Figure	1. Overall Network Architecture 

 

 

Figure	2.	The network architecture of the SOAP module 
 

First, utilizing spatial attention enables capturing spatial dependencies between different 
positions in the image, allowing the model to simultaneously attend to characteristics of 
different regions across the entire image space. The input feature map 𝐹 ∈ 𝑅ுൈௐൈ஼ is fed into 
distinct spatial attention modules, enabling it to focus on the small object region from various 
dimensions, thereby aiding in perceiving the features of the small object region. The 
computation formula is shown in Equation (3-1): 
 

𝑀ଵ ൌ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝐹ሻ 

(1) 𝑀ଶ ൌ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝐹ሻ 
… 

𝑀௞ ൌ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝐹ሻ 
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After obtaining spatial attention matrices of different dimensions, the maximum response 
portion of each attention matrix image is extracted to acquire the maximum response spatial 
attention matrix image, which is then applied to the input feature F. The calculation formula is 
depicted in Equation (2): 
 

𝐹ᇱ ൌ 𝑀𝐴𝑋ሺ𝑀ଵ, 𝑀ଶ, … 𝑀௞ሻ⨀𝐹	 (2) 
 
Next, the obtained feature map F, is passed through the self-attention module. Self-attention 
dynamically adjusts weights based on the importance of different parts of the input sequence. 
When perceiving the small object region, the self-attention mechanism can adaptively increase 
the attention to the small object region, thereby better perceiving the small object region. 
Initially, the feature map F, is transformed through three independent linear transformations 
to generate vectors for query (Q), key (K), and value (V). The calculation formula is presented 
in Equation (3): 
 

𝑄 ൌ 𝐹, ⋅ 𝑊ொ 
(3) 𝐾 ൌ 𝐹, ⋅ 𝑊௄ 

𝑉 ൌ 𝐹, ⋅ 𝑊௏ 
 
Where W୕, W୏, W୚ are learned weight matrices. Next, the dot product between query (Q) and 
key (K) is computed, followed by scaling each dot product to reduce the impact of large values 
on the softmax operation. The calculation formula is presented in Equation (3-4): 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾ሻ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ
𝑄𝐾்

√𝑑ᇱ
ሻ (4) 

 

Where √dᇱ represents the scaling factor. Then, the self-attention weights are applied to the 
values (V) to obtain the weighted value feature map. The calculation formula is presented in 
Equation (3-5): 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑂𝑢𝑡𝑝𝑢𝑡 ൌ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾ሻ ⋅ 𝑉 (5) 
 
Finally, the obtained attention feature map is applied to F,, resulting in the final output feature 
map F୭, as shown in Equation (3-6): 
 

𝐹௢ ൌ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑂𝑢𝑡𝑝𝑢𝑡 ∙ 𝐹,	 (6) 

3.3. Loss	function	
In terms of the loss function, there are three types of loss functions in total, namely classification 
loss function, localization loss function, and confidence loss function. The classification loss 
function primarily measures the model's accuracy in classifying object categories. By 
computing the cross-entropy loss, this loss function penalizes the discrepancy between the 
model's prediction of object categories and the ground truth labels. The localization loss 
function primarily evaluates the model's accuracy in regressing object positions and sizes. 
Through the smooth L1 loss function, this loss function penalizes the difference between the 
model's prediction of object positions and sizes and the ground truth values. The confidence 
loss function mainly assesses the model's prediction accuracy of object presence. By employing 
Focal Loss or binary cross-entropy loss function, this loss function penalizes the discrepancy 
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between the model's prediction of object presence and the ground truth labels. The formulas 
for the three different loss functions are shown in Equations (3-7), (3-8), and (3-9): 
 

𝐶𝑙𝑠௟௢௦௦ ൌ െ
1
𝑁

෍ ෍ 𝑝௜,௖𝑙𝑜𝑔 ሺ𝑝̂௜,௖ሻ
஼

௖ୀଵ

ே

௜ୀଵ
	 (7) 

 
Where pො୧,ୡ is the predicted probability by the model that the i-th anchor box belongs to class c, 
p୧,ୡ is the true label indicating whether the i-th anchor box belongs to class c. N represents the 
total number of anchor boxes, and C represents the number of classes for each anchor box. 
 

𝐿𝑜𝑐௟௢௦௦

ൌ
1
𝑁

෍ ෍ ൝
0.5൫𝑡̂௜,௝ െ 𝑡௜,௝൯

ଶ
, 𝑖𝑓ห𝑡̂௜,௝ െ 𝑡௜,௝ห ൏ 1

ห𝑡̂௜,௝ െ 𝑡௜,௝ห െ 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒௝∈ሼ௫,௬,௪,௛ሽ

ே

௜
 (8) 

 
Where t̂୧,୨ represents the predicted j-th parameter (either unknown or size) of the i-th anchor 
box, and t୧,୨ represents the true i -th parameter of the i-th anchor box. 

 

𝐶𝑜𝑛𝑓௟௢௦௦ ൌ െ
1
𝑁

෍ 𝑐௜ 𝑙𝑜𝑔ሺ𝑐̂௜ሻ
ே

௜ୀଵ
െ ሺ1 െ 𝑐௜ሻ𝑙𝑜𝑔 ሺ1 െ 𝑐̂௜ሻ	 (9) 

 
Where cො୧  represents the model's confidence prediction for the i -th anchor box, and c୧ 
represents the confidence label of the i-th anchor box. 

4. Experiment	

We conducted ablation experiments and comparative experiments on both the publicly 
available TT-100k [39] small object dataset and the Northeastern University (NEU) [40] 
Carbonate dataset. Additionally, it visualized the feature maps after passing through the small 
object feature generator and the final detection results. 

4.1. Dataset	
TT‐100k	dataset: TT-100k is a public small object dataset for traffic sign detection. The image 
resolution is 2048×2048. After excluding categories with fewer than 100 samples, there are 45 
categories remaining. This paper evaluates the detection performance of objects of different 
sizes in this dataset, including small-scale objects (area <32×32 pixels), medium-scale objects 
(32×32 <area <96×96), and large-scale objects (area> 96×96). The proportions of the three 
scales of objects in the dataset are (42, 50, 8)%. Due to the relatively high proportion of small 
objects, the TT-100k dataset is one of the best benchmarks for evaluating the performance of 
small object detection. 
The NEU Carbonate dataset consists of six common types of surface Carbonates found in hot-
rolled steel strips, including rolling oxide scales, patches, cracks, pitted surfaces, inclusions, and 
scratches. This dataset comprises a total of 1800 grayscale images, each with an original 
resolution of 200×200 pixels. Each type of Carbonate contains 300 samples. Similarly, this study 
evaluated the detection performance of various Carbonate sizes within this dataset. 
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4.2. Ablation	experiment	
Table	1.	The ablation experiments in NEU dataset (%) 

method AP 𝐴𝑃଴.ହ 𝐴𝑃଴.଻ହ 𝐴𝑃௦௠௔௟௟ 𝐴𝑅௦௠௔௟௟ 
Baseline 39.8 76.1 36.9 30.8 54.3 
Baseline 
+SOAP 

39.1 77.9 36.9 32.3 56.4 

 

Table	2. The ablation experiments in TT-100k dataset (%) 
method AP 𝐴𝑃଴.ହ 𝐴𝑃଴.଻ହ 𝐴𝑃௦௠௔௟௟ 𝐴𝑅௦௠௔௟௟ 
Baseline 42.6 71.9 44.1 24.8 32.5 
Baseline	
+SOAP	

44.3 75.1 47.0 27.2 35.6 

 

As shown in Table 1 and Table 2, ablation experiments were conducted on the NEU Carbonate 
dataset and the TT-100K dataset to validate the effectiveness of the proposed method. The 
experimental results demonstrate that by incorporating the Small Object Awareness 
Perception (SOAP) module into the YOLOX-nano baseline model, the detection performance of 
the model on small objects can be significantly improved. Compared to the baseline model, on 
the NEU Carbonate dataset, the average precision (APୱ୫ୟ୪୪) and average recall (ARୱ୫ୟ୪୪) for 
small objects were improved by 1.5% and 2.1%, respectively. At IoU of 0.5, the average 
precision was increased by 1.8%. On the TT-100K dataset, the APୱ୫ୟ୪୪ and ARୱ୫ୟ୪୪ for small 
objects were increased by 2.4% and 3.1%, respectively. At IoU of 0.5, the average precision was 
improved by 3.2%. The results of the ablation experiments demonstrate that the proposed 
SOAP module effectively enhances the model's perception of small object Carbonate regions. 

4.3. Comparative	experiment	
Table	3. The comparative experiment in NEU dataset (%) 

Method 𝐴𝑃	 𝐴𝑃଴.ହ 𝐴𝑃଴.଻ହ 𝐴𝑃௦௠௔௟௟ 𝐴𝑅௦௠௔௟௟ 
NanoDet-m 26.6 62.7 17.1 28.1 54.6 

NanoDet-m-1.5x 27.2 65.2 17.3 25.3 52.2 
NanoDet-EfficientNet-Lite0 28.0 68.1 17.2 27.9 54.7 
NanoDet-EfficientNet-Lite1 35.2 66.8 32.9 22.4 49.5 

Yolov7-tiny 35.9 69.3 33.7 31.7 51.5 
Yolov8-nano 40.7	 75.6 39.2	 30.1 39.3 

our	 39.1 77.9	 36.9 32.3	 56.4	

 
The performance of our method was compared with other classic open-source lightweight 
object detection models on the NEU Carbonate dataset, and the comparative results are shown 
in Table 3. The proposed module significantly improves the performance of the detection model 
by enhancing the model's perception of small object regions. Among the NanoDet series, the 
models NanoDet-EfficientNet-Lite0 and NanoDet-m achieved the highest average precision 
(APୱ୫ୟ୪୪) for small objects and overall AP଴.ହ at 0.5 IoU, reaching 68.1% and 28.1%, respectively. 
The model NanoDet-EfficientNet-Lite0 achieved the highest average recall (ARୱ୫ୟ୪୪) for small 
objects at 54.7%. Compared to NanoDet-EfficientNet-Lite0, our method improved APୱ୫ୟ୪୪ for 
small objects by 4.4% and AP଴.ହ  at 0.5 IoU by 9.8%. Compared to NanoDet-m, our method 
improved ARୱ୫ୟ୪୪ for small objects by 4.2%. Compared to Yolov7-tiny, our method improved 
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AP଴.ହ at 0.5 IoU by 8.6%, APୱ୫ୟ୪୪ for small objects by 0.6%, and ARୱ୫ୟ୪୪ for small objects by 4.9%. 
Compared to Yolov8-nano, our method improved AP଴.ହ at 0.5 IoU by 2.3%, AP for small objects 
by 2.2%, and ARୱ୫ୟ୪୪ for small objects by 17.1%. The comparisons demonstrate the advantages 
of our method in detecting small object Carbonates. To further validate the generalization of 
our model, comparative experiments were also conducted on the TT-100k dataset, and the 
experimental results are shown in Table 4. 
 

Table	4. The comparative experiment in TT-100k dataset (%) 

Method 𝐴𝑃	 𝐴𝑃଴.ହ 𝐴𝑃଴.଻ହ 𝐴𝑃௦௠௔௟௟ 𝐴𝑅௦௠௔௟௟ 
NanoDet-m 37.6 52.0 43.7 17.3 41.8 

NanoDet-m-1.5x 37.5 51.8 44.0 20.2 42.4 
NanoDet-EfficientNet-Lite0 28.5 40.2 33.5 16.0 41.6 
NanoDet-EfficientNet-Lite1 44.0 58.8 51.0 20.6 45.9	

Yolov7-tiny 47.7	 76.8	 52.0	 23.7 28.4 
Yolov8-nano 44.3 71.3 48.0 22.6 27.4 

our	 44.3 75.1 47.0 27.2	 35.6 
 
From Table 4, it can be observed that in the NanoDet series, the highest average precision 
(APୱ୫ୟ୪୪) for small objects, average recall (ARୱ୫ୟ୪୪) for small objects, and overall AP଴.ହ at 0.5 IoU 
were achieved by the NanoDet-EfficientNet-Lite1 model, reaching 20.6%, 58.8%, and 45.9%, 
respectively. Compared to NanoDet-EfficientNet-Lite1, our method improved AP for small 
objects by 6.6%, AP଴.ହ at 0.5 IoU by 16.3%, and decreased ARୱ୫ୟ୪୪ for small objects by 10.3%. 
Compared to YOLOv7, our method improved APୱ୫ୟ୪୪ for small objects by 3.5% and ARୱ୫ୟ୪୪ for 
small objects by 7.2%, while decreasing AP଴.ହ at 0.5 IoU by 1.7%. Compared to Yolov8-nano, our 
method improved APୱ୫ୟ୪୪ for small objects by 4.6%, ARୱ୫ୟ୪୪ for small objects by 8.3%, and AP଴.ହ 
at 0.5 IoU by 3.8%. Considering all performance metrics comprehensively, it can be concluded 
that our method is more suitable for practical applications. 

4.4. Visualization	results	

      

     

     

original image 
feature map of 

baseline 
our feature 

map 
detection result 

of baseline 
our detection 

result 
Figure	3. Visualization results 

 



Frontiers	in	Science	and	Engineering	 Volume	5	Issue	3,	2025

ISSN:	2710‐0588	
	

160 

Figure 3 visualizes the results obtained after applying our algorithm to the original Carbonate 
images. The first column shows the original images, the second column displays the feature 
maps outputted by the baseline model, the third column presents the feature maps outputted 
by our algorithm, the fourth column shows the detection results of the baseline model, and the 
fifth column depicts the detection results of our algorithm. It can be observed that after 
processing the Carbonate images with our algorithm, the features in the small object regions 
become more pronounced. Additionally, the number of detected Carbonates increases. 
Therefore, the effectiveness of the SOAP module proposed in this paper can be inferred. 

5. Conclusion	

In order to address the challenge of detecting small objects in Geological Carbonate detection, 
this study introduces the SOAP module by combining spatial attention and self-attention 
mechanisms to enhance the model's perception of small object regions. Subsequently, 
experiments were conducted on the publicly available small object dataset TT-100K and the 
Geological Carbonate dataset NEU to validate the effectiveness of the proposed approach 
through ablation and comparative studies. In the future, we plan to extend this research method 
to Carbonate detection in other Geological domains to verify the versatility of the proposed 
module. Moreover, Geological Carbonates encompass not only the issue of small objects but 
also challenges related to unclear foreground and background, inter-class similarity, and intra-
class variance. Therefore, addressing all these challenges in the Carbonate detection process 
will be the focus of our future research endeavors. 
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