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Abstract	
Accurate	extraction	of	corresponding	feature	points	between	adjacent	frames	is	crucial	
for	improving	pose	estimation	accuracy	in	multi‐line	LiDAR	frame‐to‐frame	registration.	
This	paper	proposes	a	least	squares	deviation	analysis	method	to	optimize	the	matching	
process	of	pole‐like	object	 features.	First,	point	cloud	data	 is	preprocessed,	 including	
denoising	and	grid	projection,	to	enhance	feature	point	stability.	Then,	candidate	feature	
points	are	initially	selected	using	point	cloud	clustering	and	bounding	box	methods.	The	
least	squares	method	is	applied	to	analyze	the	deviation	of	features	between	adjacent	
frames,	eliminating	points	with	significant	matching	errors.	Finally,	optimized	feature	
matching	 improves	 the	accuracy	of	 frame‐to‐frame	registration.	Experimental	results	
demonstrate	 that	 the	 proposed	 method	 can	 efficiently	 and	 accurately	 extract	
corresponding	 pole‐like	 object	 features	 between	 adjacent	 frames,	 enhancing	
registration	stability.	

Keywords	

Multi‐line	LiDAR,	frame‐to‐frame	registration,	least	squares	method,	deviation	analysis,	
feature	matching.	

1. Introduction	

Accurate feature extraction between consecutive frames is crucial for enhancing the 
registration accuracy of multi-line LiDAR systems. In urban environments, dynamic objects, 
occlusions, and sensor noise introduce challenges in feature matching, leading to potential 
localization errors. To address these issues, robust feature extraction and outlier removal 
strategies are required to ensure reliable frame-to-frame alignment. 
In recent years, various LiDAR-based registration methods have been proposed, leveraging 
point cloud characteristics to improve positioning accuracy. Traditional feature-based methods 
rely on geometric descriptors or handcrafted rules to identify corresponding points between 
frames. However, these approaches are sensitive to environmental variations and may result 
in mismatches, affecting the overall localization performance. To overcome these limitations, 
optimization-based techniques such as the least squares method have been widely applied for 
error minimization in feature matching. 
This paper proposes an optimization method based on Euclidean clustering[1,2], centroid 
position fitting, and least squares deviation analysis to accurately extract corresponding point 
cloud features between adjacent frames. Taking pole-like objects, which are common in urban 
environments, as an example, the extracted pole-like objects in adjacent frames are first 
clustered using Euclidean clustering. The centroids of the clustered point clouds are then fitted 
to represent their positions in 3D space. By aligning the pole-like objects in a unified coordinate 
system, their deviations are analyzed using the least squares method[3,4] to identify and retain 
features with corresponding positions in adjacent frames. Experimental results show that the 
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proposed method effectively extracts corresponding features between adjacent frames, 
enabling accurate frame-to-frame registration while reducing interference from unmatched 
point clouds and improving registration accuracy.  

2. Related	Work	

With the advancement of LiDAR technology, particularly multi-line LiDAR, it has been widely 
applied in autonomous driving, intelligent transportation, and robotic navigation. Feature 
extraction from LiDAR point cloud data is crucial for LiDAR odometry applications. Accurate 
extraction of corresponding feature points between adjacent frames is essential for precise 
frame-to-frame registration. 
Feature extraction plays a crucial role in LiDAR data processing, as extracting stable point cloud 
features effectively is a key challenge in LiDAR odometry. Since multi-line LiDAR captures a 
large number of points in each frame, using all point clouds for registration is computationally 
expensive. Leveraging feature information for registration significantly improves 
computational efficiency. Traditional point cloud feature extraction methods include geometric 
features, statistical features, and feature descriptors. 
Geometric features are derived from the shape and structure of the point cloud, describing the 
object's geometry. These include point cloud normal vectors, normal estimation, curvature and 
other geometric properties. Geometric features are intuitive and computationally simple, 
making them suitable for large-scale point clouds. However, they are sensitive to noise and 
inaccurate in describing complex shapes. Geometric features are suitable for applications such 
as simple object shape recognition, localization and terrain analysis. Weinmann et al.[5] 
examined the impact of geometric feature factors and proposed a deep learning-based 
classification framework. After downsampling the point cloud, neighborhood recovery was 
performed, followed by the extraction of a set of geometric features in different neighborhoods. 
Finally, various classifiers based on deep learning were applied to classify the point cloud and 
evaluate its correlation. 
Statistical features are extracted by performing statistical analysis on local regions of the point 
cloud. Commonly used statistical features include the density and distance distribution of point 
clouds. Statistical features can adapt to noise and environmental changes, and are also 
applicable to sparse point clouds and dynamically transformed point clouds. However, 
statistical features rely on the overall distribution of local regions, potentially overlook fine 
geometric structures. Statistical features are suitable for analyzing the overall distribution of 
point clouds and point cloud clustering. Zhang et al.[6] used statistical model based on Poisson 
distribution and region-growing algorithm to extract feature points from the point cloud. They 
adaptively calculate different feature measurement thresholds for various local features and 
reconstruct feature lines based on the linkage information and the geometric shape of the 
feature point clusters. 
Feature descriptors[7] are vectors or sets of eigenvalues that describe the characteristics of the 
region surrounding a feature point, and are divided into local and global descriptors. Feature 
descriptors capture local geometric and topological information of the point cloud, showing 
strong adaptability to shape changes. They can also introduce multiple features, such as normal 
direction and curvature through descriptors. However, computing feature descriptors is 
typically complex, requiring substantial computational resources for large-scale point clouds. 
They also have weak adaptability to sparse point clouds and noise. Feature descriptors are 
suitable for applications such as object recognition, matching and tracking. Rusu et al.[8,9] 
proposed the Point Feature Histograms (PFH) algorithm and the Fast Point Feature Histograms 
(FPFH) algorithm. The PFH algorithm describes local features by calculating the histogram of 
local geometric relationships in the point cloud. The FPFH algorithm optimizes PFH by reducing 
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computational complexity and the time required for calculations. Rusu et al.[10] also proposed 
the Viewpoint Feature Histogram (VFH) algorithm, which combines viewpoint information and 
local geometric information as a global descriptor. This algorithm is capable of handling 
complex object shapes but has a higher computational complexity and requires more 
computational resources. Charles et al.[11,12] proposed the PointNet model, which uses deep 
learning for feature extraction from point clouds. They later improved it to develop the 
PointNet++ model. 
This study makes full use of the rod-shaped ground objects on both sides of urban roads. 
According to the geometric characteristics of these objects, initial feature extraction is 
performed in the vertical direction by analyzing the changes in depth information of 
neighboring points. Furthermore, the extracted point cloud clusters are assessed according to 
the overall geometric feature information of the rod-shaped ground objects. 

3. Materials	and	Methods	

After accurately extracting pole-like object point clouds from each frame of multi-line LiDAR 
data, it is necessary to further match corresponding pole-like objects between adjacent frames 
to ensure the accuracy of frame-to-frame registration. However, due to platform motion and 
dynamic environmental changes, there may be deviations in the extracted pole-like objects 
between adjacent frames. Some pole-like objects may not be successfully extracted in certain 
frames, or their shapes may change due to variations in perspective, occlusion, and other 
factors, increasing the difficulty of frame-to-frame matching. To address this issue, this study 
proposes a least squares deviation analysis method to identify corresponding pole-like object 
point cloud clusters between adjacent frames. The method calculates the positional deviation 
of pole-like objects between adjacent frames using the least squares method and selects pole-
like object pairs with high matching confidence based on the statistical characteristics of the 
deviation. Specifically, the method first computes the geometric center coordinates of all 
candidate pole-like object point clouds in adjacent frames and analyzes their displacement 
trends using the least squares method. This process eliminates mismatches that may arise due 
to noise or local environmental changes, thereby ensuring the matching accuracy of pole-like 
objects between adjacent frames. The application of this method not only enhances the stable 
matching capability of pole-like objects between frames but also reduces mismatches caused 
by environmental changes or noise interference, providing more reliable feature point clouds 
for subsequent pose estimation and frame-to-frame registration. The specific steps are as 
follows: 
(1) Fitting point Center point of cloud cluster. the Euclidean clustering algorithm based on KD-
tree is used to obtain the point cloud clusters of rods in adjacent frames, and the three-
dimensional coordinates of the center of each rod are fitted to represent the position of the rod. 
The centers of the fitted rod-shaped ground objects in the current frame and the previous frame 
are denoted as 1 2 3{ , , , , }iM m m m m    and 1 2 3{ , , , , }jN n n n n    , where i  and j  represent the 

number of rod-shaped ground object point cloud clusters in the current and previous frames, 
respectively. The point cloud data from both frames of the multi-line LiDAR are extracted in the 
same coordinate system with the LiDAR as the origin. The points from M  and N  are combined 
and represented as 1 2 1 2{ , , , , , , , }i i i i jQ q q q q q q     . 

(2) The deviation from each central point to the nearest point was calculated. The minimum 
distance mind  to the nearest neighbor for all points in Q  is calculated, as well as the average 

nearest neighbor distance d . The deviation of the nearest neighbor distance for each point is 
denoted as d . 
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(3) The corresponding rod-shaped object was determined by least square deviation analysis. 
The index of each point in Q  is used as the independent variable x , and d  is taken as the 
dependent variable y . Least squares fitting is applied to analyze the data. 

The least squares fitting line equation is: 
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Figure	1.	Least squares fitting deviation to remove point clouds with no corresponding 

position. 
 

As shown in Figure 1, the X-axis represents the index of the center points of rod-shaped ground 
object point clouds, and the Y-axis represents the deviation of the distance between each center 
point and its nearest point. After each least squares fitting, the slope is checked to see if it meets 
the conditions. If the slope is not sufficiently small, the difference between the true value and 
the fitted value is calculated, as shown by the dashed line in the Figure 1. The point with the 
largest error (shown as the white point in the Figure 1) is removed, and least squares fitting is 
performed again until the slope meets the condition, or the error of all points is no greater than 
the set threshold, and the maximum number of iterations is reached. 
Figure 2 illustrates the position of rod-shaped ground objects point clouds in adjacent frames. 
Since the dependent variable is the deviation of the distance to the nearest neighbor, and the 
position distance difference between corresponding points in adjacent frames is similar, the 
fitted line should be as parallel to the X-axis as possible, meaning the slope (a) should be 
minimized. The real and fitted values' deviations for each point are calculated, and points with 
large deviations are marked and removed. The least squares fitting process is repeated until 
the deviations between all points and their fitted values meet the threshold requirement (set 
to 0.2 in this study). The marked points corresponding to the point cloud clusters in M  and N  
are then deleted, leaving only the points that have corresponding rod-shaped ground objects in 
both adjacent frames. 
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Figure	2.	Position diagram of point cloud of adjacent frame rod	

4. Experimental	Results	

The experimental system runs on Windows 11 with Visual Studio 2017 and utilizes the Point 
Cloud Library (PCL) 1.13.1. The experimental data was collected using a Hesai 32-line multi-
line LiDAR (XT32M2X) configured in dual-echo mode, with a point cloud acquisition rate of 
1,280,000 points per second, a scanning frame rate of 20 Hz, a horizontal angular resolution of 
0.36°, and a vertical angular resolution of 1.3°. The data details are shown in Figure 3. 
 

 
Figure	3. Multi-line LiDAR point cloud data 

 
The first two subfigures in Figure 4 show the results of the processed multi-line LiDAR point 
cloud data, where the extracted vertical point clouds have been clustered using Euclidean 
clustering. The corresponding pole-like object point clouds between adjacent frames, retained 
using the least squares method, are also displayed. In these figures, the red and yellow point 
clouds represent the pole-like objects in the current and previous frames, respectively. As 
shown, the pole-like object features retained through the least squares method are clearly 
defined and have corresponding positions in adjacent frames, facilitating subsequent feature 
registration for pose transformation estimation. The last two subfigures in Figure 4 illustrate 
the results of applying Iterative Closest Point (ICP) to align the pole-like objects in adjacent 
frames within the same coordinate system. In these figures, the yellow point cloud represents 
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the target, while the red point cloud represents the source. It can be observed that after 
registration, the yellow and red point clouds are nearly perfectly aligned visually. 
 

    
(a) 

    
(b) 

  
(c) 

    
(d) 

Figure	4.	Adjacent frame extraction corresponding to rod-shaped object point cloud image 

5. Conclusion	

This study proposes a least squares deviation analysis method, combined with Euclidean 
clustering and centroid fitting techniques, to achieve efficient extraction of pole-like object 
features in adjacent frames of multi-line LiDAR data. The proposed method effectively identifies 
and matches corresponding pole-like object features between adjacent frames, providing 
reliable matching points for subsequent feature registration. Experimental results demonstrate 
that the method exhibits strong performance in terms of both accuracy and stability, 
significantly improving the extraction precision of pole-like object features and laying a solid 
foundation for enhancing frame-to-frame registration and localization accuracy. 
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