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Abstract	

In	recent	years,	virtual	try‐on	technology	has	seen	a	continuous	surge	in	public	visibility	
and	 has	 become	 a	 key	 tool	 for	 many	 companies	 to	 boost	 sales	 and	 enhance	 user	
experience.	Existing	virtual	try‐on	methods	are	mainly	divided	into	two	categories:	those	
based	on	Generative	Adversarial	Networks	(GANs)	and	those	based	on	diffusion	models.	
GAN‐based	methods	have	been	widely	applied	due	 to	 their	compact	model	structures	
and	fast	execution	speed,	but	there	is	still	room	for	improvement	in	image	quality	and	
detail	 fidelity.	 In	 contrast,	 diffusion	model‐based	methods	 excel	 in	 generating	 high‐
quality	and	realistic	images,	but	their	high	computational	complexity	and	slow	inference	
speed	 limit	 their	 practicality	 in	 real‐time	 applications.	To	 address	 these	 issues,	 this	
paper	proposes	a	 lightweight	and	efficient	virtual	 try‐on	model	called	MG‐VTON	 that	
does	not	require	human	parsing.	By	introducing	knowledge	distillation	techniques,	we	
have	 streamlined	 the	 model	 to	 significantly	 improve	 computational	 efficiency	 and	
inference	speed.	Moreover,	MG‐VTON	can	still	generate	high‐quality	and	realistic	try‐on	
effects	without	relying	on	human	parsing.	This	work	offers	new	insights	for	the	further	
development	of	virtual	try‐on	technology,	enhancing	the	user	experience	and	providing	
companies	 with	 more	 competitive	 solutions	 in	 digital	 apparel	 presentation	 and	
marketing.	
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Virtual	 try‐on,	Generative	Adversarial	Networks	 (GANs),	knowledge	distillation,	 real‐
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1. Introduction		

With the rapid advancement of information technology, online shopping has become an integral 
part of daily life, particularly in the context of clothing purchases. However, because online 
shopping cannot provide the physical try-on experience that offline shopping offers, many 
consumers often face challenges related to sizing, style, and fit when selecting clothes, which in 
turn affects their purchasing decisions. To address this limitation, virtual try-on (VITON) 
technology has emerged. It aims to simulate a near-realistic try-on experience using digital 
technologies, thereby enhancing users' shopping experiences and encouraging purchase 
behavior. This development not only improves the convenience of online shopping but also 
brings new sales models and business opportunities to the fashion retail industry. 
Traditional virtual try-on technologies primarily rely on 3D reconstructions of real human 
bodies [1] and clothing models [2], employing complex physical simulations to achieve dynamic 
dressing effects. However, these methods require processing numerous parameters, leading to 
high computational costs for model training and demanding substantial hardware resources, 
which typical users may not have. Additionally, the collection and processing of these 
parameters involve significant time and labor, raising concerns about user privacy. These 
approaches also fall short in terms of simulation realism and privacy protection. Therefore, 
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developing a low-cost, high-quality, and user-friendly virtual try-on solution has become a 
shared goal of both academic and industry efforts. 
In 2017, VITON [3] introduced the first 2D image-based virtual try-on method, which leveraged 
human pose estimation and segmentation techniques to effectively address the challenge of 
limited supervised training data, significantly reducing the reliance on 3D reconstructions. This 
method breathed new life into the virtual try-on field, marking the beginning of a new era in 2D 
virtual try-on technology. 
As virtual try-on technology continued to evolve, researchers proposed various innovative 
methods to tackle emerging challenges. For instance, knowledge distillation techniques were 
introduced to minimize the impact of manual parsing during model training. In this approach, 
a teacher network guides the student network’s learning process, leading to more efficient 
model training, as demonstrated by PF-AFN [4]. With improvements in computer hardware, 
technologies for generating high-resolution and high-quality images have also progressed, such 
as VITON-HD [5] and HR-VTON [6], further enhancing the realism of virtual try-on results. 
Inspired by Generative Adversarial Networks (GANs) and diffusion models, single-stage 
network architectures [7] and diffusion-based networks [8] have emerged, providing new 
momentum for virtual try-on research. Currently, GANs play a critical role in virtual try-on 
technology due to their compact structure and training efficiency, making them widely used in 
generating clothing images. 
In recent years, diffusion models have garnered increasing attention due to their unique 
forward and reverse diffusion learning processes. These models gradually introduce and 
remove noise step by step, in combination with conditional control, achieving significant 
progress in image realism and detail restoration. Specifically, diffusion models introduce 
Gaussian noise incrementally during forward diffusion and then reverse the process step by 
step to denoise, ultimately generating a clear, detailed image. This process brings new 
possibilities to the virtual try-on field, especially for generating intricate clothing details that 
do not exist in the original images. While diffusion models still face challenges, particularly in 
preserving the original characteristics of the clothing, recent studies have significantly 
improved the controllability of these models [9], laying a strong foundation for their application 
in virtual try-on systems. 
However, the computational resources and time required for image generation using diffusion 
models remain major bottlenecks. With the rise of the mobile era, the demand for faster 
response times has increased dramatically, yet diffusion models are still too slow during 
inference. In contrast, GANs hold a significant advantage in terms of speed and model size. 
Consequently, in this paper, we adopt knowledge distillation techniques in GAN-based methods 
to ensure high-quality image generation while substantially reducing model size, making them 
more suitable for real-time applications. In diffusion model-based methods, we explore their 
application in image restoration, improving existing models and retraining them to achieve 
higher-quality image generation. 
In summary, the main contributions of this paper are as follows:  
We introduce knowledge distillation techniques to build a novel, lightweight GAN-based model.  
The new student network offers faster inference speed and a smaller model size, making it 
suitable for resource-constrained environments. 

2. Related	Work	

Since the introduction of the innovative two-stage strategy proposed by VITON [3], virtual try-
on has entered a new era. Currently, virtual try-on approaches can be broadly divided into two 
categories based on their underlying network architectures: GAN-based virtual try-on and 
diffusion model-based virtual try-on. 
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Most GAN-based virtual try-on methods follow a two-stage strategy: (1) First, the clothing is 
deformed to fit the pose of the target person as closely as possible. (2) Then, a GAN is used to 
fuse the deformed clothing image with the person’s body, excluding the clothing, to generate 
the final image. 
In the first stage, various methods like TPS [10], STN [11], Flow [12], and Implicit 
transformations are commonly used to deform the clothing so it fits the target pose. The quality 
of this deformation largely determines the final outcome. Thin Plate Spline (TPS) [10] treats a 
2D image as a thin plate and deforms it by moving control points, causing the plate to bend or 
stretch. TPS minimizes the second derivative of the deformation, smoothing the image and 
avoiding unnatural folds or sharp angles. While TPS is effective for global transformations, it is 
limited in controlling fine local details. Spatial Transformer Networks (STN) [11] is a deep 
learning framework consisting of three parts: the Localization Network, which adjusts the 
deformation location; the Grid Generator, which generates the target grid; and the Sampler, 
which samples the input image and outputs the transformed image. STN is highly adaptable and 
can be improved by better training data, though the quality of the dataset directly affects 
performance. Optical Flow (Flow) [12] assumes that each pixel moves and calculates its next 
position, providing pixel-level control for detailed transformations. Implicit methods, instead 
of using explicit spatial transformations, align clothing and body features in the feature space 
through deep neural networks. O-VITON [13] aligns clothing features in the body region, while 
TryOnGAN [7] utilizes StyleGAN's [14] feature alignment, ensuring clothing is aligned with the 
target pose. While implicit methods enhance clothing deformation, controlling the finer details 
of the clothing remains challenging. Finally, a GAN is often used to generate the final deformed 
clothing image. 
In the second stage, a GAN is directly applied to generate the image, significantly affecting the 
final quality. Numerous methods have been explored to address unnatural artifacts. Early 
works like VITON [3] and CP-VITON [15] focused on the try-on process, achieving good results 
for simple clothing in central regions but causing blurring in non-clothing areas. CP-VITON+ 
[16] improved upon this by preserving non-clothing regions, mitigating some of these issues. 
Later methods like PFAFN [4] and Flow-Style-VTON [17] made significant improvements in the 
deformation module, resulting in clearer boundaries and more natural-looking images. 
Additionally, networks specifically designed for high-resolution image generation emerged, 
such as VITON-HD [5], which introduced misalignment-aware normalization to better align the 
clothing with the person, reducing misalignment and occlusion. HR-VITON [6] emphasized the 
coupling between body features and clothing, generating more natural results. Both methods 
enhanced image details after synthesis. 
Recently, diffusion models have also been applied to this field. Originally, diffusion models 
aimed to eliminate Gaussian noise [18], but with the introduction of DDPM [19], their potential 
for image generation became apparent. Diffusion models consist of a forward process and a 
reverse process. In the forward process, noise is progressively added to the original image, 
represented as p஘ሺx0ሻ ≔ ׬ pθሺx0: Tሻd x1: T , where x଴  is the clean image and xଵ, … , x୘  are 
latent variables. The joint distribution p஘ሺx0: Tሻ  is learned from the Gaussian 
distributionpሺxTሻ ൌ 𝒩ሺxT; 0, Iሻ, and noise β1, … , β୘ is added step by step in a Markov chain. 
The distribution at time step t after adding noise to the previous step xt െ 1 is: 
 

 𝑞ሺ 𝑥𝑡 ∣∣ 𝑥௧ିଵ ሻ ൌ 𝒩൫𝑥௧; ඥ1 െ 𝛽௧𝑥௧ିଵ, 𝛽௧𝐼൯ (1) 

 
The denoising process is represented by the retention ratio α୲ ൌ 1 െ β୲ , and the cumulative 
ratio αഥt ≔ ∏ s ൌ 1୲αୱ  represents the total change from the initial data to time step t . The 
distribution of x୲ at time step t, given the initial data x଴ , is:  
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 qሺ x୲ ∣∣ x଴ ሻ ൌ 𝒩൫x୲; √αഥtx0, ሺ1 െ α୲ഥ ሻI൯ (2) 
 
The reverse process restores the noisy image to its original form. If the forward process can be 
reversed, i.e., by sampling from qሺ x୲ ∣∣ x୲ିଵ ሻ, the original image can be restored from a random 
Gaussian sample 𝒩ሺ0, Iሻ. Usingμ஘ሺx୲, tሻ, the mean predicted by the neural network θ, and σ୲

ଶ, 
the variance at time step t, the reverse process formula is as follows:  

 
 p஘ሺ x୲ିଵ ∣∣ x୲ ሻ ൌ 𝒩ሺx୲ିଵ; μ஘ሺx୲, tሻ, σ୲

ଶIሻ (3) 
 
Latent Diffusion Models (LDM) [20] introduced a pioneering cross-attention layer that allows 
flexible control of image generation through different modalities, laying a solid foundation for 
subsequent diffusion models. 
TryOnDiffusion [9] employed two parallel Unets for training, achieving impressive results, 
although this approach requires significant computational resources and challenging datasets. 
Consequently, many recent methods have focused on fine-tuning large pre-trained models [21] 
or guiding pre-trained models [22]. LaDI-VTON [8] used LDM to convert clothing image 
features into CLIP tokens to guide image generation. DCI-VITON [21] utilized a two-stage 
strategy, first deforming the clothing and then using a diffusion model to restore the masked 
region. CAT-DM [22] and StableVITON [23] adopted ideas from ControlNet [24], using part of a 
Unet to enhance the detail guidance for clothing. OOTDiffusion [25] encoded both clothing 
images and text descriptions and input them into a Unet for guidance. IDM-VTON [26] used IP-
Adapter [27] to fine-tune TryOnNet, enhancing the background and target clothing generation. 
These studies show that diffusion-based methods produce more natural and realistic images, 
though due to the stochastic nature of diffusion models, inconsistencies in clothing detail 
generation may still arise. 
In conclusion, both approaches have their strengths. Diffusion models excel in generating fine 
details but require large-scale models and significant computational resources, leading to 
slower inference times. Additionally, while diffusion models generate high-quality details, there 
is still room for improvement in maintaining consistency. In contrast, GAN-based methods offer 
faster inference with smaller model sizes, making them more suitable for resource-constrained 
environments requiring quick results. 

3. Preliminaries	

In terms of clothing deformation, this paper primarily focuses on the method introduced by 
Flow [12]. This method captures the displacement of pixels or features before and after 
transformation. Let ൫u୶, u୷൯ represent the displacement. At the target position ሺx, yሻ, sampling 
is performed from ൫x െ u୶, y െ u୷൯ in the original distribution, with bilinear interpolation used 
for non-integer coordinates. This enables varying levels of prediction complexity, depending on 
whether the prediction involves pixel-level details or higher-level features, and whether it is 
handled on a single layer or across multiple layers. 
Single-layer optical flow networks perform sampling at a single feature level, while multi-layer 
optical flow networks sample at multiple feature levels, progressing from coarse to fine. To 
achieve more natural and realistic clothing deformations, modern multi-layer optical flow 
methods are more refined compared to traditional optical flow networks. These methods 
estimate various factors, including body posture and key points, using multiple optical flow 
maps, resulting in more detailed deformation results. 
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Since the introduction of GANs [28], they have become a cornerstone of image generation. The 
goal of GANs is to learn the data distribution and generate images that closely resemble those 
in the training dataset. The fundamental idea of GANs is based on adversarial training between 
a generator network and a discriminator network. The generator strives to maximize the 
probability that its generated images are classified as real by the discriminator, while the 
discriminator aims to maximize its ability to distinguish real images from generated ones. 
The process begins by defining a prior on the input noise variable p୸ሺzሻ . To learn the 
generator’s data distribution p୥ሺxሻ, the generator maps the noise variable z to the data space 
through a differentiable function G൫z; θ୥൯ , where G  is parameterized by θ୥ . A multilayer 
perceptron  Dሺx; θୢሻ  is then used as the discriminator, outputting a scalar value representing 
the probability that x comes from the real data distribution rather than from p୥. 

By jointly training both the discriminator D and the generator G, the discriminator learns to 
distinguish real from generated data, maximizing the probability of correct classification. 

Meanwhile, the generator minimizes the objective function log ቀ1 െ D൫Gሺzሻ൯ቁ , learning to 

generate more realistic data that makes it harder for the discriminator to differentiate. In 
essence, D and G engage in a minimax game, with the value function VሺG, Dሻ  expressed as 
follows:  

 

min
ீ

max
஽

𝑉 ሺ𝐷, 𝐺ሻ ൌ 𝐸௫∼௣dt ሺ௫ሻሾlog 𝐷 ሺ𝑥ሻሿ\𝑛𝑜𝑡𝑎𝑔 ൅ 𝐸௭∼௣೥ሺ௭ሻ ቂlog ቀ1 െ 𝐷൫𝐺ሺ𝑧ሻ൯ቁቃ (4) 

 

4. Methodology	

To fully leverage the advantages of GANs, this paper employs a knowledge distillation approach 
to minimize model size and reduce input parameters. One of the most advanced GAN models in 
this field, GP-VTON[29], is selected as the teacher network for this study, and a new student 
network is constructed. The overall network architecture is shown below Figure 1: 

 

 
Figure	1.	MG-VTON Overall Network Structure. 
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In this figure, p represents the original person image; p∗ is the parsed person image, including 
various auxiliary images such as dense pose maps, human keypoint estimations, and 
segmentation maps; cᇱ is a randomly selected garment from the training set that differs from 
the person’s original garment; cᇱ∗  represents auxiliary images for the garment, such as 
segmentation maps; segpred

ᇱ  is the predicted segmentation structure; cpred
ᇱ  is the warped 

garment output from the teacher network; and t  is the teacher network’s final output. Similarly, 
c is the image of the garment originally worn by the person, cpred is the warped garment output 
from the student network, and pᇱ is the final output of the student network. 
First, the person image p is selected, and a different garment cᇱ is randomly chosen. In the Warp 
stage of the teacher network, garment warping is performed based on parsed information from 
the person image p∗ and the garment image cᇱ∗ , resulting in a warped garment image. This 
image is then fed into the Try-on stage of the teacher network to generate the try-on result t. 
The try-on result t and the original garment image c are then passed through the Warp stage of 
the student network to obtain the warped original garment, which is subsequently input into 
the Try-on stage of the student network, generating the reconstructed person image pᇱ. 
In the teacher network GP-VTON[29], two Feature Pyramid Networks are initially applied to 
extract five multi-scale features from both the condition and input images. These features are 
then fed into a warping module to obtain both local and global transformations. The garment is 
decomposed into three parts: left, middle, and right. Local transformations are applied to each 
part individually, and the decomposed, warped garment images are then combined via global 
parsing to produce the complete warped garment image. 
In the student network, a lightweight structure is achieved by skipping garment decomposition 
and performing holistic transformations. The main components are: an MF network for feature 
extraction, an AFEN network for flow-based warping, and an MFG network for generating the 
try-on image. 
The structure of the MF network is shown in Figure 2. Its primary architecture is similar to the 
Feature Pyramid Network in the teacher network but is made lighter by introducing the UIB 
module from MobileNetv4[30]. This module is used to construct the feature pyramid, with 
additional expansion layers to enhance accuracy. The UIB module builds on the concept of 
Inverted Residuals, adding two optional depthwise convolutions (Starting depthwise conv and 
Expansion conv) to achieve four different instantiations, including ConvNext. Spatial mixing is 
performed before expansion, allowing for a larger receptive field as needed. Inverted Residuals 
enable spatial mixing for expanded features, allowing efficient and accurate feature extraction 
with a smaller network structure. ExtraDW can cheaply increase the network's depth and field 
of view, combining the advantages of ConvNext and Inverted Residuals, while FFN accelerates 
operations to maximize computational efficiency. Similar to the teacher network, a five-layer 
feature pyramid is constructed, with the person and garment images input separately to extract 
features. Since the teacher network has more inputs than the student network, a tunable 
knowledge distillation scheme[4] is used, employing a knowledge distillation loss to guide 
feature extraction in the student network. 

 
 

𝐿dis ൌ 𝜓 ෍||𝑡௣೔
െ 𝑠௣೔

||ଶ

ே

௜ୀଵ

	

	

(5) 

 
 

ψൌ ቊ1，𝑖𝑓‖𝑡 െ 𝑝‖ଵ ൏ ‖𝑠 െ 𝑝‖ଵ ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (6) 
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Here, ψ is the adjustment factor, and t୮౟
 and s୮౟

 represent the features extracted at the 𝑖-th 
layer of the feature pyramid in the teacher and student networks, respectively. 

 

 
Figure	2.	MF Network Architecture. 

 

Next, the extracted features are input into the warping network. Following the method by Ge et 
al.[4], the AFEN network is used for synthesis. This module aims to warp the garment image 
according to the human pose image while preserving the garment's original texture, aligning as 
closely as possible with the person's posture and any occlusions. The module consists of 
multiple convolutional networks of varying sizes, which estimate multi-level feature maps from 
the MF module to produce an overall deformation estimation map for the garment. This map is 
then applied to the garment image to obtain the warped garment output. To enhance the 
preservation of garment features, the module is optimized using a second-order smoothness 
loss: 

 
Lୱୣୡ ൌ ෍ ෍ ෍ CharLossሺf୧

୲ି஠ ൅ f୧
୲ା஠ െ 2f୧

୲ሻ
஠∈୒౪୲

୒

୧ୀଵ

 (7) 

 
Here, f୧

୲ is the t-th point in the flow map at the i-th layer of the feature pyramid; N୲ represents 
the set of horizontal, vertical, and diagonal neighboring points around point t; and CharLoss 
denotes the generalized Charbonnier loss[31]. 
The final component, MFG, is the generation network, as shown in Figure 3. To achieve a 
compact yet accurate network structure, it incorporates the UIB module from MobileNetv4[30] 
and the Unet architecture[32]. In the Unet architecture, the encoder (downsampling path) and 
decoder (upsampling path) are implemented using UIB modules with different 
hyperparameters, such as varying strides and expansion rates. 
Since the training is divided into two stages, the loss functions are also split accordingly. In the 
Warp stage, the loss function is defined as follows: 

 
 𝐿warp ൌ 𝜆warp𝐿warp ൅ 𝜆per𝐿per ൅ 𝜆sec𝐿sec ൅ 𝜆dis𝐿dis (8) 

 
Here,𝐿௟

warp ൌ ||𝑐pred െ 𝑝 ⊙ 𝑚gt|| ; 𝑝 ⊙ 𝑚gt represents the element-wise product of the person 
image 𝑝  and its corresponding garment mask 𝑚gt  , retaining only the garment region and 
masking out other areas. 𝐿௟

warp calculates the pixel-level 𝐿1 loss between the generated image 
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and the real image. 𝐿per
warp ൌ ∑ ||௜ Φ௜൫𝑐pred൯ െ Φ௜൫𝑝 ⊙ 𝑚gt൯|| is the perceptual loss[33]; 𝐿secis the 

second-order smoothness loss; and 𝐿dis  represents the distillation loss. These four types of 
losses together constitute the loss function for the Warp stage. 

 

 
Figure	3.	MFG Network Architecture. 

 

In the GEN stage, the loss function is defined as follows: 
 

 Lgen ൌ λ୪
genL୪

gen ൅ λper
genLper

gen (8) 
 

Here, only the 𝐿1 loss and perceptual loss[33] are used to supervise the training of MFG by 
comparing the pixel-wise differences between the generated image and the original image. 

5. Experiments	

5.1. Experimental	Setup	
Dataset: In this study, we utilize the VITON-HD dataset[5], focusing primarily on images with a 
resolution of 512 ൈ 384 pixels. The dataset comprises a total of 13,679 pairs of person and 
clothing images, which are further divided into 11,647 training pairs and 2,032 testing pairs. 
We process the dataset following the methodology proposed by Zhenyu Xie et al.[30], 
employing techniques from[38] and[39] to obtain 2D human pose images, dense pose images, 
and parsing maps for both persons and garments. 
Benchmark and Evaluation Metrics: We compare our proposed MG-VTON model with several 
state-of-the-art parser-free virtual try-on methods, including PF-AFN[4], FS-VTON[40], and 
DM-VTON[32]. All these methods are retrained on the VITON-HD dataset[5] using the official 
code provided by the authors to produce results at a resolution of 512 ൈ 384 pixels. The 
retrained models are then evaluated using the original test images to ensure a fair comparison. 
Our evaluation focuses on two main aspects: 
Quality of Generated Images: Assessed using the Fréchet Inception Distance (FID) and the 
Learned Perceptual Image Patch Similarity (LPIPS) metrics, which measure the similarity 
between the generated images and the ground truth. 
Model Efficiency: Evaluated in terms of inference speed (frames per second, FPS), 
computational complexity (measured in gigaflops, GFLOPs), memory usage (in megabytes, MB), 
and the number of model parameters (in millions, M). These metrics provide insights into the 
practicality of deploying the models in real-world applications. 
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5.2. Qualitative	Results	
Table 1 presents the quantitative results of our experiments. As shown, our proposed MG-VTON 
model significantly reduces the number of parameters and memory consumption compared to 
existing methods, while still maintaining high-quality virtual try-on results. Specifically, MG-
VTON achieves a favorable balance between performance and efficiency, making it suitable for 
scenarios where computational resources are limited. 

 
Table	1.	Quantitative Comparison of Different Methods on the VITON-HD Dataset. 
Model FID↓ LPIPS↓ FPS↑ Memory(MB)↓ GFLOPs↓ Parameters(M)↓ 

PF-AFN 9.36 0.197 16.53 279.30 275.71 73.20 
FS-VTON 11.41 0.180 18.06 330.63 265.95 85.66 
DM-VTON 11.18 0.223 24.69 35.82 139.65 9.35 
MG-VTON 10.29 0.210 45.98 35.88 140.00 9.36 

 
Figure 4 provides a visual comparison of the results produced by different methods. It 
illustrates how our MG-VTON model performs in comparison to other state-of-the-art methods 
on the VITON-HD dataset. As observed, MG-VTON generates images with realistic details and 
accurate garment fitting, demonstrating its superiority in visual quality. 

 

 
Figure	4.	MFG Network Architecture 
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5.3. Ablation	Study	
Our approach primarily builds upon the methodology of DM-VTON[32], which serves as our 
baseline for conducting ablation studies to verify the effectiveness of our proposed 
modifications. Specifically, we assess the impact of replacing the teacher network, integrating 
the MF feature extraction module, and implementing the MG generation module. 
Effect of Replacing the Teacher Network: We first keep the student network of DM-VTON 
unchanged but replace the teacher network with GP-VTON, resulting in a model we refer to as 
GPDM-VTON. We retrain the student network accordingly to observe the effect of the new 
teacher network on the student's learning process. 
Integration of the MF Feature Extraction Module: Next, we introduce the MF module into the 
feature extraction network and conduct qualitative comparisons. Under the condition of using 
GP-VTON as the teacher network, we adopt the MF module for feature extraction, denoted as 
MG-VTON(MF). This allows us to evaluate the impact of the MF module on the model's ability 
to capture detailed features. 
Implementation of the MG Generation Module: Finally, with the feature extraction modules all 
utilizing MF, we incorporate the MG generation module, resulting in our complete model, MG-
VTON. This step assesses the combined effect of both the MF and MG modules on the overall 
performance. 

 
	Table	2. Performance Comparison in Ablation Study. 

Model FID↓ LPIPS↓ FPS↑ Memory(MB)↓ GFLOPs↓ Parameters(M)↓ 
DM-VTON 11.18 0.223 24.69 35.82 139.65 9.35 

GPDM-VTON 10.86 0.234 38.35 35.82 139.65 9.35 
MG-VTON(MF) 10.80 0.228 32.67 35.87 139.94 9.36 

MG-VTON(Ours) 10.29 0.210 45.98 35.88 140.00 9.36 
 
From the results presented in Table 2, we observe that each modification contributes to an 
improvement in the quality of the generated images. Specifically, replacing the teacher network 
with GP-VTON enhances the FID score, indicating better alignment with real images. The 
integration of the MF module further improves the LPIPS metric, reflecting enhanced 
perceptual similarity. The implementation of the MG module leads to the best overall 
performance, demonstrating the effectiveness of our proposed modules in enhancing the 
virtual try-on results. 
These results confirm that each component of our proposed method contributes to enhancing 
the model's performance, both in terms of image quality and computational efficiency. 

6. Conclusion	

This paper presents a lightweight and efficient network called MG-VTON. By utilizing a mobile 
device framework, the network achieves strong real-time computational capabilities with 
relatively low resource consumption. Specifically, an advanced teacher network is employed to 
guide the student network's learning process, enabling the student network to generate high-
quality images without relying on human parsing. 
However, some challenges remain. When the person's pose is complex, the flow network 
struggles to effectively handle overlapping regions. This issue could be mitigated by improving 
the deformation network, AFEN. Additionally, due to the small size of the network model and 
the large size of the processed images, instability can occur during training. This problem could 
be addressed by slightly increasing the network's capacity. 
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Overall, the experimental results demonstrate the potential of the proposed method, which can 
be applied on mobile devices for rapid virtual try-on image generation, rather than relying on 
centralized large servers. Furthermore, its real-time capabilities make it well-suited for 
applications such as augmented reality (AR) and other virtual experiences. 
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