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Abstract	
Lockwire	 plays	 a	 crucial	 role	 in	 various	 industries,	 including	 aviation,	 automotive,	
power,	oil,	and	gas,	by	ensuring	the	secure	fastening	of	critical	components.	However,	
detecting	Lockwire	objects	poses	significant	challenges	due	to	their	reflective	metallic	
materials	 and	 surface	 textures	 that	 closely	 resemble	 the	 surrounding	 environment.	
Traditional	 object	 detection	methods	 struggle	 with	 these	 characteristics,	 especially	
when	working	with	small	datasets	and	variable	 lighting	conditions.	To	address	 these	
issues,	we	propose	LwDetFormer,	a	hybrid	CNN‐Transformer	model	designed	for	high‐
precision	 detection	 of	 Lockwire	 objects	 in	 complex	 backgrounds.	 LwDetFormer	
integrates	MobileNet's	 local	 feature	extraction	capabilities	with	Transformer's	global	
feature	modeling	 abilities,	 enhancing	 accuracy	 and	 robustness.	 The	model	 includes	
innovative	 modules	 such	 as	 Spatial	 Pyramid	 Pooling	 Focus,	 Feature	 Enhancement	
Module,	Feature	Fusion	Module,	and	Spatial	Context	Awareness	Module.	Experimental	
results	 on	 a	 test	 set	 containing	 2,000	 images	 show	 that	 LwDetFormer	 outperforms	
advanced	models	 like	YOLOv8,	MobileNetv3,	and	MobileFormer	 in	 terms	of	precision	
and	recall,	achieving	a	precision	rate	of	95.9%	and	a	recall	rate	of	92.0%.	These	findings	
highlight	LwDetFormer's	potential	for	improving	safety	and	efficiency	in	the	inspection	
of	aircraft	engine	fuse	parts.	
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1. Introduction	

Lockwire has a wide range of applications, including but not limited to industries such as 
aviation, automotive, power, oil, and gas. In the aviation sector, the aerospace manufacturing 
industry extensively uses Lockwire to ensure the secure fastening of critical components, 
preventing safety incidents caused by loose parts. Object detection is an important task in the 
field of computer vision, aimed at identifying and locating objects of interest within images. In 
the manufacturing and maintenance of electronic devices, accurate identification of Lockwire 
components for fuses is crucial for ensuring the normal operation of equipment. 
Currently, deep learning models applied to Lockwire object detection generally face a challenge: 
achieving high accuracy detection and recognition on smaller datasets is difficult. This is mainly 
attributed to the characteristics of Lockwire itself, which predominantly uses reflective metallic 
materials with surface features that closely resemble the surrounding environment's texture. 
Consequently, in real production environments, the shape, texture, and background of fuse 
parts have minimal differences, making it challenging for traditional object detection methods 
to achieve satisfactory results. Additionally, dataset annotation requires specialized knowledge 
and is labor-intensive, resulting in limited available annotated dataset sizes and further 
exacerbating this challenge. Moreover, images collected in real-world environments often 
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cannot meet the uniform requirements of shooting conditions, and variations in lighting 
conditions can impact image quality to varying degrees. 
To address these issues, this paper proposes a hybrid CNN-Transformer model named 
LwDetFormer. This model aims to achieve high precision and robustness against interference 
under high recall conditions in the task of detecting fuse targets in aviation engines. The goal is 
to effectively solve the challenges faced in Lockwire object detection. 

1.1. Related	Work	
Mask R-CNN (Region-based Convolutional Neural Network) is a deep learning model for 
instance segmentation proposed by the team of SUN Junhua[1]. It adds a branch for predicting 
object masks on top of Faster R-CNN, enabling multi-task learning for object detection, 
classification, and segmentation. Mask R-CNN has demonstrated excellent performance on the 
COCO dataset, particularly in handling complex scenes and overlapping objects. However, 
traditional Mask R-CNN models may encounter accuracy degradation when dealing with small 
targets like Lockwire that have reflective characteristics and surface textures similar to their 
backgrounds. This is mainly due to the convolutional neural network part struggling to fully 
capture the subtle features of such targets. 
MobileNet[2], proposed by Howard et al., is a lightweight convolutional neural network 
designed to run on mobile and embedded devices. It significantly reduces computational load 
and model parameters through depthwise separable convolutions and inverted residual 
structures while maintaining high accuracy. Models in the MobileNet series, such as 
MobileNetV2 and MobileNetV3, have achieved notable results in tasks like image classification, 
object detection, and semantic segmentation. However, despite its excellence in handling local 
features, MobileNet's global feature extraction capability is relatively weak, which may limit the 
detection accuracy of small targets like Lockwire in complex backgrounds. 
Vision Transformer (ViT)[3], proposed by Dosovitskiy et al., is a visual model based on the 
Transformer architecture. ViT segments images into a series of fixed-size patches (tokens) and 
models global relationships among these patches via a Transformer encoder to achieve image 
classification. Pre-trained on large datasets such as ImageNet-21k and JFT-300M, ViT exhibits 
outstanding performance. However, when trained from scratch on medium-sized datasets like 
ImageNet, ViT's performance typically falls short compared to convolutional neural networks 
(CNNs). This is primarily because its simple tokenization process fails to effectively model local 
structural information in images, such as edges and lines, leading to lower training sample 
efficiency. 
MobileFormer[4], proposed by Chen et al., is a hybrid model that combines the advantages of 
MobileNet and Transformer through a parallel structure and bidirectional bridging mechanism, 
achieving effective integration of local processing and global interaction. MobileFormer has 
achieved significantly better performance than single MobileNet or Transformer models in 
tasks like image classification and object detection. Its key innovation lies in using very few 
tokens (e.g., 6 or fewer) as input to the Transformer, thereby greatly reducing computational 
costs. Additionally, MobileFormer enables bidirectional feature fusion between MobileNet and 
Transformer through a lightweight cross-attention mechanism. However, the performance of 
MobileFormer in handling small targets with complex backgrounds and reflective 
characteristics, such as Lockwire, still needs further validation. 
Given the strengths and weaknesses of the aforementioned models, this paper proposes a 
hybrid CNN-Transformer model named LwDetFormer, specifically for Lockwire object 
detection. This model combines the local feature extraction capabilities of MobileNet and the 
global feature modeling capabilities of Transformer, achieving high-precision detection of 
Lockwire in complex backgrounds through parallel structure and bidirectional feature fusion 
mechanisms. The LwDetFormer model aims to address the precision and recall challenges 
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faced by traditional deep learning models in Lockwire object detection, providing strong 
support for overall inspection of aviation engines. 

1.2. Research	Gaps	and	Innovations	
Despite significant achievements in the field of object detection by previous researchers, there 
remain several research gaps and challenges.[5] Issues such as lighting variations and complex 
backgrounds in real production environments further increase the difficulty of object 
detection.[6]The following are several problems associated with Lockwire in real production 
environments, leading to lower accuracy and correct detection rates for Lockwire: 
1. Lockwire is predominantly made from reflective metallic materials, whose surface features 
closely resemble the texture of the surrounding environment, making it easy to cause confusion 
during identification. This results in high overall false detection and misclassification rates for 
Lockwire in actual environments. 
2. The annotation of datasets requires specialized knowledge and is labor-intensive, resulting 
in limited available annotated dataset sizes. This poses a challenge for deep learning-based 
detection methods. 
3. Images collected from real-world environments often do not meet the requirements of 
uniform shooting conditions, and actual collected images will be affected by varying degrees of 
lighting. 
To address these challenges, this paper proposes the LwDetFormer model approach, which is 
a target detection model based on a hybrid CNN-Transformer architecture.[7] It aims to solve 
the problems of detection confusion, training with small datasets, and the impact of lighting on 
detection accuracy in Lockwire object detection. 

2. LwDetFormer	

2.1. Framework	
The LwDetFormer model consists of MobileFormer blocks, Spatial Pyramid Pooling Focus 
(SPPF), Feature Enhancement Module (FEM), Feature Fusion Module (FFM), Spatial Context 
Awareness Module (SCAM), and multiple detection heads. The overall structural diagram is 
shown in the figure below: 
 

 
Figure	1.	Main Architecture of LwDetFormer 

 
When an input image of size 640 640  is fed into the model, it first passes through a backbone 
network composed of five MobileFormer blocks and one Spatial Pyramid Pooling Focus (SPPF). 
The first MobileFormer block accepts the 640 640  image along with global tokens. Up until the 
third MobileFormer block's output, each MobileFormer block sequentially outputs feature 
maps and tokens at resolutions of 1/2, 1/4, and 1/8 of the original image size. Subsequently, 
the next two MobileFormer blocks and the SPPF output feature maps at resolutions of 1/16, 
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1/32, and 1/64 of the original image size, which are then fed into three Feature Enhancement 
Modules (FEM) in the neck. These three FEM modules produce three feature maps, 1X , 2X and

3X .After being processed by the Feature Fusion Module (FFM), these feature maps become 11X , 

22X , and 33X . They are further processed by the Spatial Context Awareness Module (SCAM) to 
produce the neck's output feature maps, 111X , 222X , and 333X . 

The three feature maps, 111X , 222X , and 333X , output from the neck are then fed into the head. 
The head consists of three MobileFormer blocks and a Feed-Forward Network (FFN). In the 
head, the 1/32 MobileFormer block receives feature embeddings from the neck, global tokens 
from the backbone network, and initially generated 100 object queries. Within the former sub-
blocks of this MobileFormer block, position embeddings corresponding to the feature 
embeddings are calculated. The updated feature embeddings, position embeddings, and refined 
object queries are then passed on to subsequent MobileFormer blocks. 
Finally, the FFN used for prediction generates detection box coordinates and detection classes 
based on the feature embeddings, position embeddings, and object queries output by the 
MobileFormer blocks. 

2.2. MobileFormer	Block	
The MobileFormer block consists of four key components: the Mobile sub-block, the Former 
sub-block, and two cross-attention modules in both directions (Mobile→Former and 
Mobile←Former). The data input to the MobileFormer block includes a feature map X and a set 
of global tokens Z.[4] 
The feature map X first enters the Mobile sub-block, where it undergoes depthwise separable 
convolutions and dynamic ReLU activation functions to extract local features. Meanwhile, the 
global tokens Z enter the Former sub-block, where they are processed through multi-head 
attention mechanisms and a feed-forward neural network (FFN) to encode global features. 
The output feature map X from the Mobile sub-block is then fed into the Mobile→Former cross-
attention mechanism, which fuses the local features into the global tokens Z, generating 
updated global tokens Z  . These updated tokens Z   are subsequently passed through the 
Former→Mobile cross-attention mechanism, which fuses the global features back into the 
feature map X, producing an updated feature map X  . 
The final outputs of the MobileFormer block include the updated feature map X  and the 
updated global tokens Z  . These outputs serve as inputs for the next MobileFormer block, 
continuing to participate in subsequent feature extraction and fusion processes. 
 

 
Figure	2.	Computation Logic of the MobileFormer Block 
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The Mobile sub-block employs depthwise separable convolution, which consists of two 
depthwise convolutions and one pointwise convolution, and uses Dynamic ReLU as the 
activation function. The Dynamic ReLU obtains parameters processed from all global tokens 
output by the Former sub-block, which are processed through two layers of Multi-Layer 
Perceptron (MLP) with two intermediate ReLU layers. Specifically, this can be represented as: 
 

 1 1 1( )Hidden relu ZW b                                                   (0.1) 
 

 2 2( )relu Hidden W b                                                    (0.2) 

 

Among these, hd
1

RW represents the expansion layer weight matrix, and 2Ch
2

RW  
represents the parameter generation layer weight matrix. Global tokens, after being processed 
by ZXA   module, are fed into the Former sub-block. After going through the stacked multi-head 
attention and Feed-Forward Network (FFN) for image encoding in the Former sub-block, they 
are output as global tokens for the next Mobile-Former block. Additionally, during the output 
process, the Former sub-block provides a branch. This branch, along with the feature map 
obtained from the Mobile sub-block after being processed by ZXA   module, is output as the 
feature map for the next Mobile-Former block.  
The structure of bidirectional bridge that achieves the bidirectional fusion of local and global 
features through a lightweight cross-attention mechanism can be described as follows: 
 

 1:[ ( , , )]Q O
X Z i i i i i hA Attn zW x x W                                                  (0.3) 

 
 1:[ ( , , )]K V

Z X i i i i i i hA Attn x zW zW                                                  (0.4) 
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The segment describes a process in which ZXA  and XZA   utilize an attention mechanism to 

integrate token iz  with feature ix
~ . The former computes using the query Q from the attention 

mechanism, treating feature ix
~  as both the key and value. The latter obtains and uses keys K

and values V through projection matrices K
iW and V

iW . This bi-directional bridging ensures 
effective communication and collaboration between the Mobile component and the Former 
component, ultimately outputting updated local feature maps X  and global tokens Z  . 

2.3. Feature	Enhancement	Module	(FEM)	
The FEM[8] is a lightweight and efficient network structure originally designed to enhance the 
feature representation capability of small objects in remote sensing images. In this model, the 
FEM is adopted as a module in the neck, receiving outputs from the last two MobileFormer 
blocks and the SPPF in the backbone network. The specific structure of the FEM module is 
shown in the figure below: 
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 1 3 3 1 1( ( ))conv convW f f F                                                           (0.7) 

 
 2 3 3 3 1 1 3 1 1( ( ( ( ))))diconv conv conv convW f f f f F                                                (0.8) 

 
 3 3 3 1 3 3 1 1 1( ( ( ( ))))diconv conv conv convW f f f f F                                                (0.9) 

 
 1 2 3 1 1( , , ) ( )convX Cat W W W f F                                         (0.10) 

 
In this process, F  represents the input feature map, and X  represents the output feature map. 
After inputting the feature map F into the FEM, it splits into four branches. The first branch 
outputs the feature map W1 after undergoing standard convolutions of 11  and 33 . The 
second branch, after experiencing standard convolutions of 11 , 31 , and 11 , undergoes a 

33  dilated convolution. The third and fourth branches follow a similar pattern. Finally, the 
feature maps 1W 、 2W  and 3W  output from the first three branches are concatenated together, 
and the feature map from the fourth branch is added element-wise to this combined output, 
ultimately producing the output feature map X . 

2.4. Feature	Fusion	Module	(FFM)		
The Feature Fusion Module[8] (FFM) improves upon the Bidirectional Feature Pyramid 
Network (BiFPN) by employing a CRC strategy to enhance information interaction between 
feature maps of different scales. The FFM module takes the feature maps 2X , 3X , 4X output by 
three Feature Extraction Modules (FEM) as inputs. Using an upward CRC strategy, it fuses the 

feature map 
4X , which has been processed through the FEM module, CBS, and upsampling 

after SPPF output, with 3X  to obtain 
3X . Similarly, this operation fuses 

3X  with 2X  to get 
2X , 

thus yielding the first half of the FFM output results: 
2X , 

3X , and 
4X . The principle of the first 

half is as follows in the following formulas:  
 

 2
4 4( ( )))upX f CBS X                                                      (0.11) 

 
 3 3 4( , )X CRC X X                                                                (0.12) 

 
 2

2 2 3( , ( ( ( ))))upX CRC X f CBS CSP X                                         (0.13) 

 

The latter half of the FFM utilizes downsampling operations on 2X , 3X , and 4X  from top to 

bottom. 
2X  undergoes a convolution with a stride of 2 and is then processed with the CRC 

strategy, where it is fused with feature map 3X  and the processed 
3X  to obtain an updated 


3X . Similarly, through a comparable operation, 

4X  is also obtained. Ultimately, the latter half 

of the FFM outputs the resulting 
2X , 

3X , and 
4X . The principle of the latter half of the FFM 

is shown as follows: 
 

 2 2( )X CSP X                                                          (0.14) 
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 3 3 3 2( ( , ( ( )), ( )))X CSP CRC X CBS CSP X CBS X                                   (0.15) 

 
 4 4 3( ( ( ), ( ))X CSP CRC CBS X CBS X                                    (0.16) 

 
The FFM first performs upsampling and downsampling operations on high-level and low-level 
feature maps to align them to the same spatial resolution. Then, it utilizes the CRC strategy to 
re-weight the feature maps based on channel information, thereby achieving effective fusion of 
feature maps at different scales. This design not only improves the quality of multi-scale feature 
fusion but also avoids a significant increase in computational complexity. It helps enhance the 
network's semantic representation capability for small targets, improving the accuracy and 
robustness of small target detection. 

2.5. Spatial	Context	Awareness	Module	(SCAM)	
The Spatial Context Awareness Module[8] (SCAM) is an efficient method for global context 
feature representation aimed at enhancing the detection capabilities of small targets in remote 
sensing images. SCAM captures global context information by integrating global average 
pooling and global maximum pooling, and utilizes this information to guide pixel learning of the 
relationships between space and channels. 
 

 
1 1

exp( )

exp( )

i

i

jN
qk ij j j j

i i i v iN n
j n qk i
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


 

 
   

  
                                          (0.17) 

 

 
1
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j
i i ij

i vN n
n i i i

avg P P P
a

avg P P P




 
                                      (0.18) 

 
The SCAM incorporates three streams to ensure its attention mechanism. In the first stream, 
the input feature map undergoes a softmax  normalized fusion of Global Average Pooling 

)( iPavg  and Global Maximum Pooling )max( iP , resulting in j
ia . In the latter two streams, the 

feature maps are transformed using simplified 11  convolutions, referred to as qk  and v , 
into QK  and V  respectively. Here, QK  retains the HWC dimensions unchanged, while the 
number of channels VC  in V  is adjusted to align with subsequent computations. After 

processing QK  with softmax , it is matrix-multiplied with V . The inclusion of j
ia , combined 

with a residual connection that adds the input feature j
iP , results in the output j

iQ . 

The first branch of SCAM is used to refine contextual details, the second branch is for 
computations involving feature maps v , and the third branch is dedicated to generating 
attention maps. By performing matrix multiplication and broadcast Hadamard product 
operations on the outputs of these branches, SCAM facilitates cross-channel and spatial 
contextual feature interactions. This mechanism suppresses irrelevant backgrounds and 
enhances the distinction between the target and background. Such a design not only improves 
the network's global correlation ability but also helps mitigate background confusion in small 
target detection, thereby enhancing the accuracy and robustness of detecting small targets. 
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3. Data	Set	Creation		

3.1. Mixup	Data	Augmentation	Method	
The Lockwire object detection task demands high quality and a large quantity of training data. 
Lockwire has reflective characteristics, with surface features very similar to the texture 
features of its surrounding environment, which can easily lead to false detections. Given that 
annotating datasets requires professional knowledge in aviation mechanics and is labor-
intensive, the currently available annotated datasets are relatively small in size.[9] 
Furthermore, due to safety and confidentiality considerations, these datasets are typically 
restricted within the collecting entity and cannot be shared. In the field of deep learning, small-
scale datasets often fail to adequately train complex models, thereby affecting the model's 
generalization ability. Additionally, Lockwire images are affected by various lighting conditions, 
and this variation in illumination further increases the difficulty of object detection. 
To address these issues, we introduce the mixup data augmentation method. As shown in the 
figure, images (a) and (b) are the original Lockwire images. After performing the mixup 
operation on these two images, image (c) is obtained. Mixup constructs new training samples 
through linear interpolation. This approach can expand the distribution of training data, which 
helps improve the model's generalization ability. Especially when dealing with small-scale 
datasets and under complex lighting conditions, mixup can effectively alleviate overfitting 
problems and enhance the model's adaptability to unseen samples. 
 

 
Figure	3.	Application of Mixup Data Augmentation on the Fuse Dataset 

 
The core idea of mixup is to construct new training samples based on the linear combination of 
two samples and their labels. Suppose we have two training samples ( , )i ix y  and ( , )j jx y , where 
x  represents the input data, and y  represents the corresponding labels. The parameter   is 
drawn from a Beta distribution, i.e., ~ ( , )Beta   , where   is a hyperparameter that controls 
the shape of the distribution. The   values generated by the Beta distribution fall within the 
interval (0,1) . 

According to the mixup method, the newly constructed sample ( , )x y   can be calculated using 
the following formulas: 
 

  1i jx x x                                                             (0.19) 
  

  1i jy y y                                                               (0.20) 
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In this process,   determines the weight of the original samples ix  and jx  and their 

corresponding labels iy  and jy  in the linear combination. Therefore, through this method, 
mixup not only enhances the diversity of the training data but also encourages the model to 
produce smoother decision boundaries between different classes. This helps reduce the 
overfitting phenomenon and may improve the model's performance on the test set. 

3.2. Dataset	Classification	
The dataset classification strategy in this article is based on a Bayesian classification decision 
analysis of maintenance tasks distributed over the time dimension within a single day. Ignoring 
the impact of extreme weather on the distribution of daylight over the time dimension within 
a single day, this article roughly sets daylight and time as uniformly distributed, and discusses 
the influence of the distribution of maintenance tasks over the time dimension within a single 
day on classification decisions.[9] 
This passage outlines an analytical approach for classifying datasets by considering how 
maintenance tasks are distributed throughout a single day, assuming a uniform distribution of 
daylight and time, to study the effects on classification decisions, barring the influence of 
extreme weather conditions. 
First, the time periods are categorized into three states: morning, noon, and evening, with the 
distribution of tasks among these categories represented as: 1 2 3{ , , }y y y y . Here, it is assumed 
that after the intelligent upgrade of the entire machine maintenance system, the total time for 
testing a single machine is 1 hour. The morning period is from 8:00 to 12:00, the noon period 
is from 12:00 to 14:00, and the afternoon period is from 14:00 to 18:00. In other words: 
 

 1 4( ) 0.P y                                                                  (0.21) 
 
 

 2 2( ) 0.P y                                                                  (0.22) 
 
 

 3 4( ) 0.P y                                                                  (0.23) 
 
 

  ( ) ( ) .?train i total iN y N P y                                                 (0.24) 

 
( )train iN y  represents the number of samples in the training dataset corresponding to iy , totalN  

represents the total number of samples in the training dataset, and ( )iP y  represents the 
probability values of the morning, noon, and evening categories. Such a prior probability 
distribution directly guides the data collection phase, with the data volume ratio for morning, 
noon, and evening being 2 :1: 2 . Taking the total number of samples in the training dataset 
totalN  as 20,000, the numbers of samples in the training dataset for the three categories of 

morning, noon, and evening ( )train iN y  are respectively 8,000, 4,000, and 8,000. The sample 
numbers are shown in the table below: 
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Figure	4.	Table of Sample Counts 

 

3.3. Data	Preprocessing	
Despite setting up review tasks and classification strategies in this article, considering the 
applicability and robustness of subsequent deep learning model object detection tasks under 
most circumstances, this article applies grayscale processing and brightness mean processing 
to the dataset images with different lighting and colors. [10]As shown in the figure below, from 
top to bottom, the first row represents the original images collected in the morning, noon, and 
evening from left to right, respectively. The second row shows the grayscale processing results 
for the morning, noon, and evening, while the third row presents the results after both grayscale 
and brightness mean processing for the morning, noon, and evening: 
 

 
Figure	5.	Effects After Grayscale Processing (Second Row) and Mean Brightness 

Normalization (Third Row) 
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4. Experiments	

4.1. Experimental	Metrics	
To comprehensively and objectively measure the performance of the model, this article uses a 
series of evaluation metrics widely recognized in the field of deep learning object detection: 
Precision P is the proportion of samples that are actually positive among those predicted as 
positive by the model. The formula for calculating precision is: 
 

 
TP

P
TP FP




                                                               (0.25) 

 
Where TP represents the number of samples correctly predicted as positive by the model, and 
FP represents the number of samples incorrectly predicted as positive by the model. The higher 
the precision, the greater the proportion of actual positive samples among those predicted as 
positive by the model, which means the lower the misclassification rate of the model. 
Compared to precision P, recall R focuses more on the proportion of all actual positive samples 
that are correctly predicted by the model. The formula for calculating recall is:  

 

 
TP

R
TP FN




                                                                (0.26) 

 
Where FN represents the number of actual positive samples that were incorrectly predicted as 
negative by the model. The higher the recall, the more actual positive samples the model can 
identify, meaning fewer positive samples are missed. This metric is crucial for application 
scenarios where comprehensive coverage of positive samples is a priority, such as in 
information retrieval, criminal investigation, etc.[11] 
The confusion matrix, also known as an error matrix, is a standard format for indicating 
accuracy evaluation. It clearly presents the results of model classification through a matrix 
format, aiding in understanding the model's performance across different categories. For the 
experiments in this article, since there are two detection targets, and to make the detection 
results clearer, a new "background" and "clamp" category should be added to represent the 
background and contrast parts like hose clamps. 
For a single detection target in this article, the confusion matrix typically includes four elements 
to describe the effectiveness of the target detection: TP (True Positive), FP (False Positive), TN 
(True Negative), and FN (False Negative), which respectively denote the quantities of 
predictions that are actually positive when predicted positive, actually negative when predicted 
positive, actually negative when predicted negative, and actually positive when predicted 
negative. For precision P and recall R, the values of the elements in the confusion matrix can be 
interconverted. 
Each column of the confusion matrix represents the predicted class, and the total number of 
each column indicates the number of data instances predicted to belong to that class. Each row 
represents the true class to which the data actually belongs, and the total number of instances 
in each row indicates the number of data instances in that particular class. Each cell in the 
matrix shows the number of samples where the actual class is the row class and the predicted 
class is the column class. 

4.2. Experimental	Results	
After testing four deep learning models—YOLOv8, MobileNetv3, MobileFormer, and 
LwDetFormer—on the test set, we obtained the model test confusion matrices based on the test 
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set. The test set used in the experiment contains 2,000 images of aircraft engine parts, with 
annotation instances for hose clamps and fuses being 200 and 1,800, respectively. Below are 
the confusion matrices for the four models: 
 

 
Figure	6.	Confusion Matrix of Various Models on the Test Set 

 
From the confusion matrices obtained by testing on the aforementioned test set, we can derive 
the TP (True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) for each 
of the four models. Based on these values, we can calculate the precision P and recall R for each 
of the four models. For detecting lockwire (fuse), the detection performance of LwDetFormer 
has improved: 
 

Table	1.	Metric Calculation Results of Various Models on the Fuse Dataset 
 YOLOv8 MobileNetv3 MobileFormer LwDetFormer 

TP 1458 1242 1674 1656 
FP 486 371 166 69 
TN 210 214 210 206 
FN 342 558 126 144 
P 75.0% 77.0% 90.98% 95.9% 
R 81.0% 69.0% 93.0% 92.0% 

 
By comparing the performance of the YOLOv8, MobileNetv3, MobileFormer, and LwDetFormer 
models on the test set, it is evident that LwDetFormer shows significant advantages in detecting 
lockwire (fuse). LwDetFormer has a precision rate of 95.9%, which is notably higher than the 
other three models (YOLOv8 at 75.0%, MobileNetv3 at 77.0%, and MobileFormer at 90.98%). 
This indicates that among samples predicted as positive by LwDetFormer, the proportion of 
actual positives is the highest, meaning it has the lowest misclassification rate. With a recall rate 
of 92.0%, LwDetFormer is only slightly lower than MobileFormer’s 93.0%, but significantly 
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higher than YOLOv8’s 81.0% and MobileNetv3’s 69.0%. This suggests that LwDetFormer can 
identify more actual positive samples with fewer missed detections. Looking at the values of TP 
(True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) from the 
confusion matrix, LwDetFormer not only excels in reducing false positives (FP is only 69) but 
also performs well in increasing the recognition of true positives (TP is 1656). Additionally, 
LwDetFormer has the least number of false negatives (FN) among the four models, with only 
144, indicating fewer instances of missed detections. 
LwDetFormer effectively enhances the detection accuracy and recall for small targets like 
lockwire, which have complex backgrounds and reflective characteristics, by combining 
MobileNet’s local feature extraction capabilities with Transformer’s global feature modeling 
abilities. Especially when dealing with challenges such as smaller dataset sizes and variations 
in lighting conditions, LwDetFormer demonstrates superior performance, providing strong 
support for the target detection of aircraft engine fuse parts lockwire. These results validate the 
effectiveness and advancement of LwDetFormer as a novel hybrid CNN-Transformer 
architecture. Future work could further explore how to optimize this model to adapt to more 
diversified application scenarios and attempt training on larger datasets to test its 
generalization ability. 

5. Summary	and	Outlook	

In response to the challenges of Lockwire target detection, this article proposes a hybrid CNN-
Transformer deep learning model named LwDetFormer. Aimed at achieving high-precision 
detection of Lockwire under conditions of complex backgrounds, reflective characteristics, and 
small-scale datasets, the model combines the local feature extraction capabilities of MobileNet 
with the global feature modeling capabilities of Vision Transformer, thereby effectively 
improving the recognition accuracy for Lockwire objects that have similar surface features and 
backgrounds. Experimental results show that LwDetFormer outperforms other advanced 
models such as YOLOv8, MobileNetv3, and MobileFormer in terms of precision and recall, 
making significant progress particularly in reducing false positives and false negatives. 
Despite its strong performance in Lockwire target detection, there are several directions worth 
further exploration for LwDetFormer: 
Stabilizing	 Model	 Parameters: Future work could involve continuing to optimize the 
LwDetFormer model structure, such as adjusting or improving parameter settings within the 
MobileFormer blocks to enhance model efficiency and performance. Additionally, considering 
applying this model to other similar small target detection tasks to verify its versatility and 
adaptability. 
Dataset	 Augmentation: Although mixup data augmentation methods help mitigate the 
challenges posed by small datasets, a richer annotated dataset remains key to enhancing model 
performance. 
Application	Expansion: Beyond the detection of aircraft engine fuse parts, LwDetFormer may 
also be applicable to the detection of small and complex objects in other fields. 
Real‐time	 Processing	 Capability: With the growth of practical application demands, 
enhancing the real-time processing speed and efficiency of LwDetFormer becomes an 
important topic. This includes but is not limited to algorithm-level optimizations and the 
application of hardware acceleration technologies to better meet the industry's need for rapid 
response. 
Through continuous efforts and improvements in these areas, it is believed that LwDetFormer 
and its subsequent versions will play an important role in more practical applications, bringing 
higher safety and efficiency to related industries. 
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