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Abstract	

Multimodal	 medical	 images,	 comprising	 anatomical	 and	 functional	 images,	 offer	
complementary	insights	into	organ	structure	and	metabolism.	Anatomical	images	depict	
internal	organ	structures,	whereas	 functional	 images	 illustrate	metabolic	activity	but	
lack	 detailed	 structural	 information.	Multimodal	 image	 fusion	 integrates	 data	 from	
different	sensors	to	create	images	enriched	with	diverse	semantic	content,	overcoming	
the	limitations	of	single‐modality	imaging.	Current	fusion	methods	based	on	generative	
adversarial	networks	(GANs)	use	discriminators	that	convolve	the	entire	input	image,	
which	can	reduce	efficiency	and	result	in	detail	loss.	To	address	this,	we	propose	a	GAN	
framework	with	a	Markov	discriminator	 that	 leverages	 local	(Markov)	properties.	By	
redesigning	 the	 discriminator	 and	 formulating	 the	 loss	 function	 based	 on	 Markov	
correlation	principles,	our	method	focuses	on	local	areas,	thereby	enhancing	network	
performance	 and	 preserving	 finer	 details	 in	 the	 fusion	 images.Experimental	 results	
demonstrate	 that	 our	 approach	 produces	 fusion	 images	with	 significantly	 improved	
detail	retention	and	superior	performance	compared	to	conventional	methods.	
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1. Introduction	

Due to the inherent differences among sensors, no single sensor can capture all the scene's 
information. Multi-modal image fusion, which combines images from various sensors, has 
emerged as a crucial research area with significant applications in medical imaging, 
autonomous vehicles, military detection, and more. For instance, while PET provides functional 
information about metabolism and blood flow, its low spatial resolution and SNR limit the 
detection of small lesions; in contrast, MRI offers high resolution and fine tissue details [1]. 
Similarly, infrared images excel in capturing thermal radiation under challenging conditions, 
though with lower resolution than visible images that capture rich texture details [2]. Existing 
fusion methods are categorized into traditional techniques—such as guided filtering, pyramid 
and wavelet transforms, multi-scale geometric analysis, and sparse representation [3-9]，and 
deep learning-based approaches, notably CNNs [10] and GANs [11]. However, CNN-based 
methods require extensive ground truth data, and conventional GANs often lose crucial image 
details by focusing on global features. To address these limitations, we propose a new fusion 
model that first employs an encoder-decoder network to fuse source images and then refines 
the result using a GAN with a Markov discriminator that emphasizes local details and edge 
structures. Experimental evaluations on publicly available infrared-visible and medical image 
datasets demonstrate that our approach outperforms state-of-the-art methods in both 
objective quality metrics and subjective visual assessments, underscoring its effectiveness in 
generating high-quality fused images. 
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In this study, we employ an encoder-decoder model to preprocess source images, ensuring the 
effective integration of distinct features from both inputs in the fused image. Furthermore, we 
introduce a generative adversarial network (GAN) with a Markov discriminator to refine the 
preliminary fusion results, enhancing the preservation of local details and edge structures. The 
proposed model demonstrates strong generalizability and is applicable to both medical image 
fusion and infrared-visible image fusion tasks. Experimental evaluations on publicly available 
infrared-visible and medical image datasets indicate that our method outperforms state-of-the-
art approaches in both objective quality metrics and subjective visual assessments, 
underscoring its effectiveness in generating high-quality fused images. 

2. Related	Work	

2.1. Generative	Adversarial	Network	
Generative adversarial networks (GANs) are deep learning models designed to generate 
synthetic data that closely mimics real data. A GAN comprises two neural networks—a 
generator and a discriminator [3]. The generator converts a random noise vector (sampled 
from a uniform or normal distribution) into synthetic "fake" data with the aim of fooling the 
discriminator [12]. The discriminator, in turn, attempts to differentiate between the real data 
and the fake data produced by the generator, outputting either a binary or a continuous value. 
The training process is a zero-sum game: the generator strives to maximize the similarity 
between its output and the real data, while the discriminator works to minimize the 
misclassification of fake data as real [13]. 

2.2. Image	fusion	methods	based	on	Generative	Adversarial	Network	
GAN used for image fusion can be roughly divided into three categories: classical GAN, dual-
discriminators GAN and multi-GAN, as shown in Table 2-1. Ma et al., [14] proposed the 
FusionGAN, which is the first GAN used for image fusion tasks, and it is also the most classic 
GAN model used for image fusion. Wang et al, [15] proposed MFIF-GAN to solve the multi-focus 
image fusion problem, and added attention mechanisms and small area removal (SRR) post-
processing operations to the model to refine the fusion results. However, this kind of classical 
GAN method will make the fusion result more biased to one of the source images, resulting in 
the loss of some details and feature information of the fused image. Later, Ma et al., [16] 
proposed DDcGAN, which is a double discriminator GAN that can better retain the respective 
feature information of two source images. Zhou et al., [17] proposed GIDGAN, adding gradient 
decision blocks and intensity decision blocks on the basis of dual-discriminator GAN, and 
applying repeated blur algorithm to solve the problem of multi-task image fusion. Li et al., [18] 
proposed RCGAN to infrared and visible image fusion. In this model, two groups of GAN models 
were used, one group was used to check the offset between fusion results and infrared images, 
and the other group was used to check the offset between fusion results and visible images. 
Huang et al., [19] proposed MGMDcGAN, where the first set of GAN is used to obtain structural 
information and the second set of GAN is used to enhance the dense information in the image. 

3. Fusion	Methods	

In this section, the proposed GAN method under Markov discriminator is introduced in detail. 
Firstly, the fusion framework is presented in Section III-A. Then, the detail of Markov 
discriminant model is described in Section III-B. The detail of Loss function is described in 
Section III-C. Finally, we present our novel fusion strategy based on two stages of attention 
models. 
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3.1. Fusion	Network		
Our fusion network (Figure 1) consists of an adversarial generative network with one generator 
and two discriminators (D1 and D2). Source images 1 and 2 are input to produce a fused image. 
The key distinction is that D2 is a Markov discriminator, which enhances local detail and 
preserves both structural and functional information, thereby improving overall detail 
retention for multimodal image fusion. 
Specifically, the process begins by feeding Source images 1 and 2 into a conventional GAN 
(GAN1), whose generator and discriminator produce an intermediate fused image that captures 
the semantic information of both inputs and retains structural gradients. This intermediate 
result is further refined using the dual discriminator framework—particularly leveraging the 
Markov discriminator—to generate the final high-quality fused image. 
 

 
Figure	1: Model Process 

 
In traditional GANs, the discriminator compresses the entire generated image into a single 
prediction (between 0 and 1) via convolution. Although a pixel gradient-based loss function 
helps preserve critical gradient information—essential for medical images—the fusion of 
infrared and visible images typically retains edge details while losing subtle gradients in other 
regions. To address this, we maintain the original generator and integrate a Markov random 
field into the discriminator. 
In convolutional networks, a neuron's receptive field defines the spatial extent of the input that 
influences its output; larger fields capture global features, while smaller fields preserve fine 
details. Conventional discriminators output a single value for the whole image, essentially 
compressing all details into one pixel. In contrast, our Markov discriminator evaluates local 
regions using an n×n receptive field. For example, processing a 4×4 patch to produce a 20×20 
output matrix means each entry represents a specific 4×4 region of the original image. This 
localized approach, which exhibits inherent Markov properties due to overlapping receptive 
fields, not only enhances detail preservation but also improves computational efficiency. 

3.2. Markov	discriminant	model		
The Markov discriminator model used in this paper is shown in Figure . The receptor field size 
is set to 63 and 94 respectively, which is experimentally verified that the discriminator can 
discriminate the images well. 
Input size corresponds to the input size on a particular layer, output size is the output size of 
that layer, stride is the step size, conv size is the size of the convolution kernel used in that layer. 
The prediction matrix obtained by Markov discriminator represents the overall similarity 
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between the generated image and the source image, focusing on the similarity between the 
fused image and the source image. It should be advantageous in terms of structural similarity 
(SSIM) when applied to medical fusion images. In addition, there should be some improvement 
in solving the image distortion problem, like fusing infrared and visible images. These two 
aspects will be verified during the following experiments. 
 

 
Figure	2: Discriminator network structure and sensory field size derivation process 

 

3.3. Loss	function	
(1) The loss function between the conventional generator G and the discriminator D1 is based 
on the WGAN-GP construction, the loss function of the generator LG is divided into adversarial 
loss LGAN and content loss LC. 
 

Lୋ ൌ Lୋ୅୒ ൅ αLେ                                                                  (1) 
 
The loss function of discriminator L(G,D1) , gradient penalty term is added to GP. 
 

Lୈଵ ൌ Lሺୋ,ୈଵሻ ൅ θ ∗ GP                                                            (2) 

The loss function of the network is: 
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LOSS1 ൌ Lୋ୅୒ ൅ αLେ ൅ Lሺୋ,ୈଵሻ ൅ θ ∗ GP                                         (3) 

 
(2) In this paper, a Markov discriminator is added to the network as D2, the overall loss function 
of the network for the generator G and the discriminator D2 is: 
 

LOSS2 ൌ Lୋ ൅ Lୈଶ                                                                  (4) 
 
For LD2, after the introduction of Markov discriminators ,the existing GAN networks usually use 
L1 or L2 parametres to constrain the difference between the generated image and the real 
image to reduce the blurring of the generated image and improve the robustness of the 
generated image. The L1 parametres are calculated as follows: 
 

S ൌ ∑ |Y୧ െ fሺx୧ሻ|୬
୧ୀଵ                                                               (5) 

  
Where Yi is the input image, and f(xi) is the output image. This constraint has been added to the 
loss function of the generator network in this paper. Because of the nature of Markov 
discriminators to discriminate blocks of images (patches) in a perceptual field, the final 
discriminant is sigmoid for all discriminant values as the discriminant value of image, as shown 
in (6). 
 

I ൌ ଵ

ୗ
ሺN െ k ൅ 2pሻ ൅ 1                                                           (6) 

 
N is the input image size, k is the size of the sensory field, p is the fill operation, S is the step size. 
Since the output of the Markov discriminator is progressively determined for each patch, this 
paper uses structural similarity as a loss function in an adversarial generative network, which 
should also be computed once for each patch by SSIM and finally summed and averaged, 
denoted as SSIMതതതതതതത. The mean and variance tend to vary drastically over the span of the whole 
image, and the distortion level of different blocks on the image may be different. There are Iଶ 
patches, then SSIMതതതതതതത is: 
 

SSIMതതതതതതത ൌ ଵ

୍మ ∑ SSIM୍మ

୧ୀଵ                                                              (7) 

 
The overall loss function of the (G,D2) network is: 
 

LOSS2 ൌ Lୋ ൅ L（ୋ,ୈଶ） ൅ ∂ ∗ SSIMതതതതതതത                                             (8) 
 

4. Experimental	Results		

4.1. Experimental	Settings	
We evaluated our fusion performance against three state-of-the-art methods—NSCT, CNN-
based, and GHIS—using identical source images (see Fig. 3). All comparison methods were 
implemented with publicly available code, with parameters set as described in their respective 
publications. 
Our experiments were conducted using TensorFlow 1.9.0, CUDA 11.5, cuDNN 8.3.0, an Intel i5-
12500H CPU, an NVIDIA RTX 3050 GPU, Python 3.6.3, and MATLAB 2018b. The experimental 
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data were obtained from Harvard Medical School, a whole brain atlas slice dataset, and public 
datasets BraTS2018 and MRBrainS, with infrared and visible images sourced from the TNO 
public dataset. The training was run for 40 epochs, with separate training for medical and IR-
VIS image fusion. In our IR-VIS fusion experiments, extended training led to overfitting—likely 
due to excessive data augmentation generating overly similar scene samples—which was 
resolved by reducing the augmentation. Five quality metrics were used to quantitatively 
compare our fusion method with existing approaches. 

4.2. Comparison	experiments	of	medical	image		
In this section, we analyze the influence of Markov discriminatorto in medical image fusion 
performance,the result are shown in Figure 3 and Table 1. The comparison of the evaluation 
indexes proves that the method has more advantages in structural similarity (SSIM) and spatial 
frequency (SF). So, the overall image similarity can be improved by using Markov discriminator. 
 

     
MRI SPECT NSCT CNN GAN 

     
MRI PET NSCT CNN GAN 

     
MRI PET NSCT CNN GAN 

Figure	3.	Image fusion results under different methods 
 

Table	1. Evaluation indexes of image fusion results under different methods 

Numble AG SSIM EN SF QAB/F 
NSCT 6.7663 0.5288/0.5947 4.3024 21.4753 0.3362 
CNN 6.6526 0.4980/0.6280 4.2617 20.6185 0.3100 
GHIS 4.1665 0.1584/0.0549 4.6095 9.9338 0.1562 
GAN 6.6065 0.7780/0.4731 4.9159 24.2021 0.6821 
NSCT 4.1118 0.6760/0.6836 4.2086 12.4342 0.3680 
CNN 3.8452 0.5648/0.7564 4.1678 12.8782 0.2639 
GHIS 2.9597 0.1882/0.1087 4.0643 7.95489 0.2425 
GAN 4.1473 0.8578/0.5363 4.2050 27.2448 0.6338 
NSCT 5.1469 0.5195/0.5319 4.6463 14.4226 0.2113 
CNN 4.7181 0.4726/0.6268 4.4571 16.3462 0.1901 
GHIS 4.0643 0.1942/0.0713 4.5389 10.5729 0.1474 
GAN 4.4784 0.5968/0.5940 4.6200 21.3974 0.3186 
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4.3. GAN	method	with	Markov	discriminant	for	fusion	of	IR	and	visible	image		
To illustrate that the overall details of the image can be well preserved using Markov 
discriminators and the effectiveness of this method for IR and visible image fusion. The 
adversarial generation network is fused for IR and visible images, as shown in Fig.4. (a), (c), (e), 
(g) are the experimental results of fused images obtained using D1. (b), (d), (f), (h) are the fused 
images obtained from the experiments using Markov discriminator. the fused images of (b)-(h) 
obtained by the proposed method have more reasonable luminance information. The image 
results we obtained have clearer edges and stronger image brightness information. 
The image quality is found to be significantly improved by comparison of magnified slices. It is 
verified that the introduction of Markov discriminator enables the network to generate fused 
images with high resolution, and get more outstanding image details. 
 

 
Figure	4. Comparison of IR-VIR image fusion result 

 

5. Conclusion	

In this paper, we proposed a novel image fusion architecture for multimodal image fusion tasks. 
First, an adversarial generative network with one generator and two discriminators is 
constructed. Then, the Markov discriminator model is used in this model. The receptor field 
size is set to 63 and 94 respectively, which is experimentally verified that the discriminator can 
discriminate the images well. 
The result shows that adversarial generative networks are a promising approach for 
multimodal image fusion tasks demonstrates state-of-the-art fusion performance. By 
comparing the fusion results with other methods for the same source images, research shows 
that the advantages of fusion networks in multi-modal image fusion have been demonstrated 
in infrared and visible light image fusion experiments. An additional experiment on the 
selection of different Markov discriminant size on the fusion results shows that Markov 
discriminators improves the performance of the network in terms of overall image similarity. 
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The process of learning based on data loss for different tasks is suitable for a variety of 
environments.  
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