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Abstract

Artificial Intelligence (AI) is profoundly transforming cryptography by significantly
enhancing cryptanalysis techniques and informing innovative cryptographic design
approaches. This survey reviews recent advancements in applying deep learning
methods to side-channel and differential fault analyses, demonstrating substantial
improvements over traditional methods in attack efficiency, accuracy, and resilience.
Additionally, it highlights breakthroughs such as neural differential cryptanalysis, which
expand classical cryptanalytic boundaries. In cryptographic design, Generative
Adversarial Networks (GANs) have successfully automated the creation of high-quality
cryptographic primitives, particularly S-boxes. Furthermore, Al shows promise in post-
quantum cryptography (PQC) by uncovering potential vulnerabilities and optimizing
cryptographic parameters. Despite these advancements, challenges persist regarding
data dependency, model generalization, and interpretability. Future research directions
emphasize enhancing Al model explainability, creating standardized benchmarks, and
integrating Al with emerging technologies such as quantum computing and zero-
knowledge proofs.
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1. Introduction

Cryptography plays a pivotal role in safeguarding information security, forming the foundation
of mechanisms such as data encryption and identity authentication, all of which rely on robust
cryptographic algorithms. With the continuous evolution of attack techniques, artificial
intelligence (Al) is increasingly demonstrating its potential in the field of cryptography. As early
as 1991, Rivest identified significant parallels between machine learning and cryptanalysis,
referring to them as "sister disciplines" [1].

In recent years, Al technologies, particularly deep learning, have achieved remarkable
breakthroughs in both the compromise of cryptographic implementations and the design of
novel cryptographic structures. For instance, researchers have successfully leveraged deep
neural networks to exploit hardware side-channel leakage, effectively defeating AES
implementations fortified with masking and jitter countermeasures [2,3,4]. Furthermore, the
incorporation of neural networks into differential cryptanalysis has significantly reduced the
complexity of key recovery attacks on an 11-round Speck32/64 instance, reaching the best-
known results at the time . Even in cryptographic design, Al-driven models such as Generative
Adversarial Networks (GANs) have been utilized to autonomously generate S-boxes with
superior cryptographic properties [5].
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The growing intersection of Al and cryptography has attracted widespread academic attention.
This paper provides a comprehensive survey of recent advancements in Al applications within
cryptanalysis and cryptographic design, covering areas such as side-channel analysis, fault
injection attacks, statistical and algebraic cryptanalysis, lightweight cryptographic design, post-
quantum cryptography, and cryptographic protocol verification. Additionally, we discuss
prevailing challenges and potential future directions in the field.

2. Al Applications in Cryptanalysis

2.1. Side-Channel Analysis (SCA)

Side-Channel Analysis (SCA) leverages inadvertent physical emissions—such as
electromagnetic radiation, power consumption, and execution timing—from cryptographic
devices to deduce secret keys. Traditional SCA methods, notably Differential Power Analysis
(DPA) and Template Attacks, necessitate manual feature extraction and statistical modeling
processes. However, deep learning techniques have significantly transformed this field.
Spectrum-based deep learning methods eliminate the reliance on Gaussian distribution
assumptions and facilitate end-to-end modeling of misaligned power traces [6]. Compared to
traditional template attacks, deep learning models demonstrate enhanced resistance to noise
and timing jitter, negating extensive preprocessing steps and outperforming classical
techniques against common implementation countermeasures, such as random delays and
masking [5].

For instance, Cagli et al. introduced Convolutional Neural Networks (CNNs) combined with data
augmentation, successfully breaching AES hardware implementations secured by random jitter,
thereby achieving unprecedented attack efficiency compared to traditional methods [6].
Similarly, Maghrebi et al. showcased that Multi-Layer Perceptron (MLP) models could
compromise first-order masked AES implementations using significantly fewer power traces
than required by conventional methods [6].

Figure 1 compares the attack success rates between deep learning-based techniques and
traditional approaches, clearly demonstrating that deep learning consistently achieves
superior success rates under equivalent sampling conditions. Although optimally configured
template attacks may occasionally approach deep learning performance in strictly controlled
scenarios, deep learning generally excels in practical, complex environments affected by trace
misalignment and timing jitter [6]. Consequently, Al-based side-channel analysis has become
indispensable for evaluating hardware security.

2.2. Differential Fault Analysis (DFA)

Differential Fault Analysis (DFA) capitalizes on computational faults intentionally induced
during cryptographic operations, comparing erroneous ciphertexts with correct ones to derive
secret keys. Classical DFA techniques typically require precise fault models and multiple
injections to achieve successful key recovery. Recent integration of deep learning into fault
analysis substantially reduces reliance on prior fault knowledge and manual analysis [7].Cheng
et al. proposed a Deep Learning-based Fault Analysis (DLFA) framework, wherein neural
networks autonomously extract key-related information from faulty ciphertext datasets [7].
Empirical evaluations illustrate that, in AES scenarios, DLFA requires only 1,488 faulty
ciphertexts and a single fault injection, achieving complete key recovery in an average
computational duration of merely 0.12 seconds. This signifies a marked advancement in
efficiency and data utilization compared to traditional Statistical Fault Analysis (SFA), which
typically demands hundreds of fault injections and nearly an hour for equivalent key recovery
success [7].Further research has employed machine learning methodologies to enhance fault
localization accuracy and fault model inference, significantly automating DFA attacks [20]. As
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shown in Figure 2, deep learning-based DFA methods consistently achieve higher key recovery
success rates with fewer fault injections relative to traditional DFA techniques, which exhibit
markedly slower progression toward successful outcomes.

Compar ison of Attack Success Rates for Different Methods
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Figure 1. Comparison of Attack Success Rates for Different Methods

Overall, incorporating Al transforms DFA from a knowledge-intensive heuristic technique into
a data-centric pattern recognition task, notably elevating both efficiency and attack success
rates. This evolution presents enhanced security challenges for embedded device
manufacturers, necessitating more robust defensive measures against fault-based attacks.
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Figure 2. Comparison of Al-Assisted Differential Fault Attack Methods
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2.3. Statistical and Algebraic Cryptanalysis

Statistical vulnerabilities have long underpinned classical cryptanalysis approaches such as
Differential Cryptanalysis (DC), Linear Cryptanalysis (LC), and Algebraic Attacks. Recent
research has increasingly explored Al-driven methodologies to automate the discovery of
intricate statistical patterns, thus enhancing attack effectiveness.

A significant recent development is Neural Differential Cryptanalysis. In 2019, Gohr introduced
a neural network-enhanced differential cryptanalysis framework, successfully launching
effective attacks on the Speck32/64 cipher. His neural network model discriminated ciphertext
pairs possessing specific input differentials from random pairs, enabling the attack to cover 11
rounds—surpassing previous manually derived results [11]. This groundbreaking work
significantly stimulated further exploration of neural-enhanced cryptanalysis methods across
diverse cryptographic primitives and architectures [11]. Al models can autonomously discern
relationships between plaintext-ciphertext differentials and underlying key structures,
eliminating manual crafting of differential characteristics. Similarly, linear cryptanalysis has
benefited from Al techniques capable of identifying optimal linear approximations and
effectively estimating key likelihood distributions, expediting linear attack convergence.

In algebraic cryptanalysis, Al primarily assists in simplifying multivariate polynomial equation
systems. For instance, machine learning approaches predict key-dependent variables most
likely conducive to solution convergence, while reinforcement learning strategies guide SAT
solvers to expedite analysis of reduced-round block ciphers [10].

Nevertheless, Al has not yet reached comparable success in algebraic cryptanalysis due to
inherent computational complexities associated with large Boolean equation systems, limiting
Al models’ capabilities in approximating viable solution spaces. Still, preliminary studies
indicate potential improvements; for example, neural networks have successfully identified
subtle structural weaknesses in reduced-round DES ciphertext distributions, previously
undetectable by conventional differential methodologies [10].

Overall, Al applications in differential, linear, and algebraic cryptanalysis remain nascent yet
promising. Al's automated pattern-recognition abilities significantly augment traditional
analytical methods, providing new insights into cryptographic vulnerabilities.

3. Al Applications in Cryptographic Design

3.1. Optimization of Lightweight Cryptography

Lightweight cryptography addresses the challenge of providing robust security solutions
tailored specifically for resource-constrained devices, which demands a careful balance
between security, performance, and resource utilization. Recently, artificial intelligence
methods have played an increasingly prominent role in optimizing essential cryptographic
components, notably S-boxes and nonlinear transformation elements. Historically, S-boxes
were designed either by manual mathematical construction or exhaustive search, methods
challenged by the vast search spaces (approximately 2168} possibilities for 8-bit S-boxes) and
multi-dimensional optimization criteria [12]. Intelligent search algorithms, including genetic
algorithms, hill climbing, neural networks, and cellular automata, have proven their global
search efficiency, discovering S-box configurations with enhanced nonlinearity and improved
differential uniformity.

Further advancing this field, Zhang et al. employed Generative Adversarial Networks (GANs) to
automatically derive cryptographic primitives with optimal characteristics. Specifically, they
proposed integrating cryptographically tailored loss functions, such as differential uniformity
and nonlinearity losses, into the GAN training process, resulting in S-boxes that simultaneously
optimize multiple cryptographic metrics [12]. Experimental evaluations demonstrated

393



Frontiers in Science and Engineering Volume 5 Issue 3, 2025
ISSN: 2710-0588

promising outcomes, where the Al-generated S-boxes attained minimum differential
uniformity of 8 and maximum nonlinearity of 104. While marginally lower than the AES
standard (differential uniformity: 4, nonlinearity: 112), these outcomes notably surpassed
randomly generated counterparts [12].

Further comparative analysis indicated the improved WGAN-GP model, combined with the
customized WGP-IM loss function, achieved significant advantages in differential uniformity,
differential probability, and boomerang uniformity metrics compared to traditional approaches
and alternative GAN models [12]. For instance, the WGP-IM-generated S-boxes exhibited the
lowest differential uniformity (achieving values as low as 8), enhancing resilience against
differential cryptanalysis, with the maximum differential probability as low as 0.0313 [12].
Figure 3 illustrates the progressive optimization of S-box nonlinearity across different GAN
training configurations, demonstrating rapid convergence toward nonlinearity scores
exceeding 100 with adjusted loss weights (e.g., L3 configuration) [12].

Ultimately, the increasing integration of intelligent algorithms within lightweight
cryptographic design is driving the automated discovery of highly secure yet resource-efficient
cryptographic components.

1 Comparison of S-Box Nonlinearity Generated by Different Al Methods
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Figure 3. Comparison of S-Box Nonlinearity Generated by Different Al Methods

3.2. Applications in Post-Quantum Cryptography (PQC)

Post-quantum cryptography (PQC), relying on computationally intensive mathematical
problems such as Learning With Errors (LWE), Short Integer Solution (SIS), and code-based
cryptography, is designed to withstand quantum computing threats. These computational
complexities provide fertile ground for Al-driven analysis.

Al techniques have notably impacted security evaluations of PQC schemes. For instance, Lauter
et al. leveraged deep learning to exploit LWE instances employing sparse binary secret keys
intended for computational efficiency. Initial attacks, such as “Salsa,” partially recovered secret
keys from LWE instances (dimension n<128, Hamming weight h<4) using millions of ciphertext
samples [15]. The subsequent “Picante” attack further scaled this approach to higher
dimensions (up to n=350), successfully recovering most secret bits even at a relatively high
sparsity (h~ n/10), outperforming conventional lattice-based solvers in these specific scenarios
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[16]. Nonetheless, such Al-based methods currently pose minimal immediate threats to
standardized PQC schemes but highlight potential structural vulnerabilities in non-
standardized implementations [14]. Additionally, neural networks have been explored in code-
based cryptanalysis, such as syndrome decoding acceleration in the McEliece cryptosystem,
and reinforcement learning approaches have been utilized for fine-tuning cryptographic
parameters, optimizing performance-security trade-offs. While no Al-driven attacks have fully
compromised standardized PQC algorithms to date, early research offers valuable insights into
potential vulnerabilities and strengthens parameter selection strategies. Looking forward, Al is
anticipated to assume a dual role—enhancing PQC security while concurrently presenting
novel threats—necessitating sustained vigilance and research.

Compar ison of Al Computational Resource Requirements in Post—Quantum Cryptanalysis
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3.3. Cryptographic Protocol Verification

Verifying the security of complex cryptographic protocols (e.g., SSL/TLS, blockchain consensus
protocols) is an inherently challenging task due to state-space explosion and inherent
undecidability, often encountered by formal verification tools like ProVerif or Tamarin.
Consequently, this process typically demands extensive computational resources and expert
oversight.

Recent advances explore Al-assisted protocol verification methodologies. Ohno and
Nakabayashi developed a deep learning-based framework that automatically classified
cryptographic protocol security. They generated extensive random protocol datasets labeled as
secure or insecure via traditional formal verification tools, subsequently training neural
networks capable of quickly predicting the security status of unseen protocols in linear
computational time [15]. This approach demonstrated considerable efficiency and successfully
identified known vulnerabilities within complex systems, including SSH and electronic voting
protocols. Beyond verification, Al has facilitated the analysis of cryptographic protocols via
automated fuzz testing, where reinforcement learning efficiently uncovers vulnerabilities by
exploring protocol state spaces. Additionally, large language models (LLMs) have been
employed effectively in smart contract auditing, rapidly identifying common security flaws and
risks. Moreover, Al has contributed to the optimization of Zero-Knowledge Proof (ZKP)
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protocols, aiding selection of optimal proving parameters and predicting bottlenecks within ZK
circuits to streamline computational overhead.

These advancements underscore Al's growing integration into protocol verification and
cryptographic design, significantly enhancing both security assurance and development
efficiency. As protocols continue to grow in complexity, Al-driven methodologies are expected
to become increasingly crucial for ensuring their trustworthiness.

4. Challenges and Future Directions

4.1. Data Dependency and Generalization Ability

The efficacy of deep learning models critically depends on large-scale, high-quality training
datasets, which poses substantial challenges within cryptographic contexts. Collecting
sufficient data for cryptanalysis can be exceedingly demanding and resource-intensive. For
example, robust training of side-channel attack models typically requires capturing hundreds
of thousands to millions of power traces [17]. Google researchers noted that even extensive
datasets—such as a masked AES dataset comprising 65,000 compressed power traces totaling
7GB—may remain inadequate for training reliable models against advanced security
countermeasures, requiring datasets in excess of 1TB [17]. Such extensive data requirements
present practical difficulties concerning data storage, labeling accuracy, and computational
overhead. Moreover, many deep learning models assume attackers possess unrestricted access
to cryptographic devices to gather extensive samples, a scenario often unrealistic in passive or
limited-access attack environments.

Additionally, existing datasets lacking diversity frequently lead to model overfitting, thereby
severely impairing their effectiveness when confronted with variations in device-specific noise
patterns or cryptographic implementations. Addressing these issues necessitates future
exploration of specialized machine learning techniques such as few-shot learning, domain
adaptation, and transfer learning, tailored specifically to cryptographic contexts to mitigate
heavy data-dependency challenges.

4.2. Explainability and Security Risks

Al models, particularly deep neural networks, often function as "black boxes," which introduces
two critical issues within cryptographic applications:

Interpretability in Cryptanalysis: When a neural network model, such as those used in neural
differential cryptanalysis, identifies correct key guesses, it is frequently unclear which
cryptographic weaknesses the model exploits. This lack of interpretability restricts
cryptographers' ability to identify underlying vulnerabilities and thus hinders targeted
improvements in cryptographic algorithms. Furthermore, it increases the risk of false positives,
as Al models may inadvertently rely on coincidental statistical correlations unrelated to actual
cryptographic weaknesses. Recent efforts to visualize and analyze intermediate neural network
layers offer preliminary insights into model behavior, but substantial advancements in
interpretability remain urgently needed [10].

Al systems themselves can become security vulnerabilities if subjected to adversarial attacks
or data poisoning during training phases. If attackers introduce carefully engineered malicious
data into training datasets, Al models could produce intentionally misleading outcomes,
potentially compromising the integrity of Al-driven cryptographic designs. The growing
adoption of Al further expands potential attack surfaces, as adversaries might attempt to
reverse-engineer Al-based cryptographic components to uncover sensitive embedded data or
hidden vulnerabilities. Therefore, ensuring the integrity and robustness of Al training
procedures is crucial. Future research must emphasize the development of verifiable and
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secure Al methodologies to bolster confidence in Al-assisted cryptographic assessments and
designs.

4.3. Integration with Emerging Technologies

The intersection of Al with emerging technologies presents both compelling opportunities and
considerable challenges for cryptographic research. For example, quantum computing poses
existential threats to classical cryptographic schemes. This raises critical questions: Could Al
techniques mitigate threats posed by quantum cryptanalysis? Conversely, can quantum-
enhanced machine learning introduce fundamentally new cryptanalytic methods? Current
research remains exploratory, as existing Al-driven attacks are inherently classical and may not
directly translate to quantum contexts, warranting further exploration.

Similarly, integrating Al with zero-knowledge proofs (ZKPs) has led to the emerging field of
Zero-Knowledge Machine Learning (ZKML). ZKML techniques aim to verify Al model
predictions cryptographically without revealing sensitive information. With Al models
increasingly embedded within cryptographic protocols, such as blockchain smart contracts,
ensuring the transparency, verifiability, and security of Al-driven decisions is paramount. Zero-
knowledge proofs could offer robust solutions for cryptographically validating Al outcomes,
thus securely embedding Al into cryptographic infrastructures.

Additionally, Al could significantly optimize post-quantum digital signature schemes by fine-
tuning key parameters, signature sizes, and verification efficiency. However, careful attention
is necessary to ensure that such optimizations do not inadvertently compromise foundational
cryptographic assumptions. Consequently, rigorous evaluation and testing of these integrated
methodologies must accompany technological advances.

In summary, the convergence of Al and emerging cryptographic technologies promises
significant security and performance breakthroughs. Nonetheless, it also demands
comprehensive, rigorous investigation to manage and mitigate potential security risks
effectively.

5. Conclusion

Artificial intelligence has profoundly reshaped the landscape of cryptanalysis and
cryptographic design. Al-driven methodologies—from automated pattern recognition in side-
channel analyses and efficient key recovery in differential fault analyses, to the intelligent
optimization of cryptographic primitives and accelerated vulnerability detection in protocol
verification—demonstrate unprecedented effectiveness. This survey has systematically
explored recent advances in Al-driven cryptography, underscoring how Al has become a dual-
edged tool capable of both undermining existing cryptographic implementations and inspiring
the development of more secure cryptographic systems. However, Al's reliance on large
datasets, limited generalization capabilities, and interpretability constraints highlight essential
limitations, emphasizing the necessity for cautious and controlled integration into
cryptographic contexts.

Future research should prioritize the following directions:

1. Developing Al models capable of achieving reliable performance under limited data
conditions, thus lowering barriers associated with data acquisition.

2. Enhancing the transparency and interpretability of Al-driven cryptanalysis, integrating
symbolic reasoning methods to facilitate verifiable Al outcomes.

3. Exploring interdisciplinary integration of Al with quantum computing, zero-knowledge
proofs, and other emergent technologies, fostering comprehensive cryptographic security
solutions.
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4. Establishing standardized benchmarks and open datasets, promoting uniformity and
reproducibility within Al-driven cryptographic research.

As the fields of Al and cryptography increasingly converge, they will mutually reinforce each
other's theoretical foundations and practical methodologies. This symbiosis promises to drive
next-generation security innovations, reinforcing our collective capacity to defend the digital
landscape robustly.

Ultimately, careful and considered integration of Al technologies into cryptographic practice
will be critical to unlocking their full potential, thus establishing a more resilient and
trustworthy cybersecurity infrastructure for the future digital world.
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