
Frontiers	in	Science	and	Engineering	 Volume	5	Issue	3,	2025

ISSN:	2710‐0588	
	

390 

A	Survey	on	the	Applications	of	Artificial	Intelligence	in	
Cryptanalysis	and	Cryptographic	Design	

Shuangjin Wu1, *, Wenbo Wang1 
1Information Engineering College, Henan University of Science and Technology, Luoyang 

471000, China. 
* Corresponding Author 

Abstract	
Artificial	 Intelligence	 (AI)	 is	 profoundly	 transforming	 cryptography	 by	 significantly	
enhancing	 cryptanalysis	 techniques	 and	 informing	 innovative	 cryptographic	 design	
approaches.	 This	 survey	 reviews	 recent	 advancements	 in	 applying	 deep	 learning	
methods	 to	 side‐channel	 and	 differential	 fault	 analyses,	 demonstrating	 substantial	
improvements	over	 traditional	methods	 in	attack	efficiency,	accuracy,	and	resilience.	
Additionally,	it	highlights	breakthroughs	such	as	neural	differential	cryptanalysis,	which	
expand	 classical	 cryptanalytic	 boundaries.	 In	 cryptographic	 design,	 Generative	
Adversarial	Networks	(GANs)	have	successfully	automated	the	creation	of	high‐quality	
cryptographic	primitives,	particularly	S‐boxes.	Furthermore,	AI	shows	promise	in	post‐
quantum	 cryptography	 (PQC)	by	uncovering	potential	 vulnerabilities	 and	optimizing	
cryptographic	parameters.	Despite	 these	advancements,	 challenges	persist	 regarding	
data	dependency,	model	generalization,	and	interpretability.	Future	research	directions	
emphasize	enhancing	AI	model	explainability,	creating	standardized	benchmarks,	and	
integrating	 AI	 with	 emerging	 technologies	 such	 as	 quantum	 computing	 and	 zero‐
knowledge	proofs.	
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1. Introduction	

Cryptography plays a pivotal role in safeguarding information security, forming the foundation 
of mechanisms such as data encryption and identity authentication, all of which rely on robust 
cryptographic algorithms. With the continuous evolution of attack techniques, artificial 
intelligence (AI) is increasingly demonstrating its potential in the field of cryptography. As early 
as 1991, Rivest identified significant parallels between machine learning and cryptanalysis, 
referring to them as "sister disciplines" [1]. 
In recent years, AI technologies, particularly deep learning, have achieved remarkable 
breakthroughs in both the compromise of cryptographic implementations and the design of 
novel cryptographic structures. For instance, researchers have successfully leveraged deep 
neural networks to exploit hardware side-channel leakage, effectively defeating AES 
implementations fortified with masking and jitter countermeasures [2,3,4]. Furthermore, the 
incorporation of neural networks into differential cryptanalysis has significantly reduced the 
complexity of key recovery attacks on an 11-round Speck32/64 instance, reaching the best-
known results at the time . Even in cryptographic design, AI-driven models such as Generative 
Adversarial Networks (GANs) have been utilized to autonomously generate S-boxes with 
superior cryptographic properties [5]. 
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The growing intersection of AI and cryptography has attracted widespread academic attention. 
This paper provides a comprehensive survey of recent advancements in AI applications within 
cryptanalysis and cryptographic design, covering areas such as side-channel analysis, fault 
injection attacks, statistical and algebraic cryptanalysis, lightweight cryptographic design, post-
quantum cryptography, and cryptographic protocol verification. Additionally, we discuss 
prevailing challenges and potential future directions in the field. 

2. AI	Applications	in	Cryptanalysis	

2.1. Side‐Channel	Analysis	(SCA)	
Side-Channel Analysis (SCA) leverages inadvertent physical emissions—such as 
electromagnetic radiation, power consumption, and execution timing—from cryptographic 
devices to deduce secret keys. Traditional SCA methods, notably Differential Power Analysis 
(DPA) and Template Attacks, necessitate manual feature extraction and statistical modeling 
processes. However, deep learning techniques have significantly transformed this field. 
Spectrum-based deep learning methods eliminate the reliance on Gaussian distribution 
assumptions and facilitate end-to-end modeling of misaligned power traces [6]. Compared to 
traditional template attacks, deep learning models demonstrate enhanced resistance to noise 
and timing jitter, negating extensive preprocessing steps and outperforming classical 
techniques against common implementation countermeasures, such as random delays and 
masking [5]. 
For instance, Cagli et al. introduced Convolutional Neural Networks (CNNs) combined with data 
augmentation, successfully breaching AES hardware implementations secured by random jitter, 
thereby achieving unprecedented attack efficiency compared to traditional methods [6]. 
Similarly, Maghrebi et al. showcased that Multi-Layer Perceptron (MLP) models could 
compromise first-order masked AES implementations using significantly fewer power traces 
than required by conventional methods [6]. 
Figure 1 compares the attack success rates between deep learning-based techniques and 
traditional approaches, clearly demonstrating that deep learning consistently achieves 
superior success rates under equivalent sampling conditions. Although optimally configured 
template attacks may occasionally approach deep learning performance in strictly controlled 
scenarios, deep learning generally excels in practical, complex environments affected by trace 
misalignment and timing jitter [6]. Consequently, AI-based side-channel analysis has become 
indispensable for evaluating hardware security. 

2.2. Differential	Fault	Analysis	(DFA)	
Differential Fault Analysis (DFA) capitalizes on computational faults intentionally induced 
during cryptographic operations, comparing erroneous ciphertexts with correct ones to derive 
secret keys. Classical DFA techniques typically require precise fault models and multiple 
injections to achieve successful key recovery. Recent integration of deep learning into fault 
analysis substantially reduces reliance on prior fault knowledge and manual analysis [7].Cheng 
et al. proposed a Deep Learning-based Fault Analysis (DLFA) framework, wherein neural 
networks autonomously extract key-related information from faulty ciphertext datasets [7]. 
Empirical evaluations illustrate that, in AES scenarios, DLFA requires only 1,488 faulty 
ciphertexts and a single fault injection, achieving complete key recovery in an average 
computational duration of merely 0.12 seconds. This signifies a marked advancement in 
efficiency and data utilization compared to traditional Statistical Fault Analysis (SFA), which 
typically demands hundreds of fault injections and nearly an hour for equivalent key recovery 
success [7].Further research has employed machine learning methodologies to enhance fault 
localization accuracy and fault model inference, significantly automating DFA attacks [20]. As 
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shown in Figure 2, deep learning-based DFA methods consistently achieve higher key recovery 
success rates with fewer fault injections relative to traditional DFA techniques, which exhibit 
markedly slower progression toward successful outcomes. 
 

 
Figure	1.	Comparison of Attack Success Rates for Different Methods 

 
Overall, incorporating AI transforms DFA from a knowledge-intensive heuristic technique into 
a data-centric pattern recognition task, notably elevating both efficiency and attack success 
rates. This evolution presents enhanced security challenges for embedded device 
manufacturers, necessitating more robust defensive measures against fault-based attacks. 
 

 
Figure	2.	Comparison of AI-Assisted Differential Fault Attack Methods 
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2.3. Statistical	and	Algebraic	Cryptanalysis		
Statistical vulnerabilities have long underpinned classical cryptanalysis approaches such as 
Differential Cryptanalysis (DC), Linear Cryptanalysis (LC), and Algebraic Attacks. Recent 
research has increasingly explored AI-driven methodologies to automate the discovery of 
intricate statistical patterns, thus enhancing attack effectiveness. 
A significant recent development is Neural Differential Cryptanalysis. In 2019, Gohr introduced 
a neural network-enhanced differential cryptanalysis framework, successfully launching 
effective attacks on the Speck32/64 cipher. His neural network model discriminated ciphertext 
pairs possessing specific input differentials from random pairs, enabling the attack to cover 11 
rounds—surpassing previous manually derived results [11]. This groundbreaking work 
significantly stimulated further exploration of neural-enhanced cryptanalysis methods across 
diverse cryptographic primitives and architectures [11]. AI models can autonomously discern 
relationships between plaintext-ciphertext differentials and underlying key structures, 
eliminating manual crafting of differential characteristics. Similarly, linear cryptanalysis has 
benefited from AI techniques capable of identifying optimal linear approximations and 
effectively estimating key likelihood distributions, expediting linear attack convergence. 
In algebraic cryptanalysis, AI primarily assists in simplifying multivariate polynomial equation 
systems. For instance, machine learning approaches predict key-dependent variables most 
likely conducive to solution convergence, while reinforcement learning strategies guide SAT 
solvers to expedite analysis of reduced-round block ciphers [10]. 
Nevertheless, AI has not yet reached comparable success in algebraic cryptanalysis due to 
inherent computational complexities associated with large Boolean equation systems, limiting 
AI models’ capabilities in approximating viable solution spaces. Still, preliminary studies 
indicate potential improvements; for example, neural networks have successfully identified 
subtle structural weaknesses in reduced-round DES ciphertext distributions, previously 
undetectable by conventional differential methodologies [10]. 
Overall, AI applications in differential, linear, and algebraic cryptanalysis remain nascent yet 
promising. AI's automated pattern-recognition abilities significantly augment traditional 
analytical methods, providing new insights into cryptographic vulnerabilities. 

3. AI	Applications	in	Cryptographic	Design	

3.1. Optimization	of	Lightweight	Cryptography	
Lightweight cryptography addresses the challenge of providing robust security solutions 
tailored specifically for resource-constrained devices, which demands a careful balance 
between security, performance, and resource utilization. Recently, artificial intelligence 
methods have played an increasingly prominent role in optimizing essential cryptographic 
components, notably S-boxes and nonlinear transformation elements. Historically, S-boxes 
were designed either by manual mathematical construction or exhaustive search, methods 
challenged by the vast search spaces (approximately 2168} possibilities for 8-bit S-boxes) and 
multi-dimensional optimization criteria [12]. Intelligent search algorithms, including genetic 
algorithms, hill climbing, neural networks, and cellular automata, have proven their global 
search efficiency, discovering S-box configurations with enhanced nonlinearity and improved 
differential uniformity. 
Further advancing this field, Zhang et al. employed Generative Adversarial Networks (GANs) to 
automatically derive cryptographic primitives with optimal characteristics. Specifically, they 
proposed integrating cryptographically tailored loss functions, such as differential uniformity 
and nonlinearity losses, into the GAN training process, resulting in S-boxes that simultaneously 
optimize multiple cryptographic metrics [12]. Experimental evaluations demonstrated 
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promising outcomes, where the AI-generated S-boxes attained minimum differential 
uniformity of 8 and maximum nonlinearity of 104. While marginally lower than the AES 
standard (differential uniformity: 4, nonlinearity: 112), these outcomes notably surpassed 
randomly generated counterparts [12]. 
Further comparative analysis indicated the improved WGAN-GP model, combined with the 
customized WGP-IM loss function, achieved significant advantages in differential uniformity, 
differential probability, and boomerang uniformity metrics compared to traditional approaches 
and alternative GAN models [12]. For instance, the WGP-IM-generated S-boxes exhibited the 
lowest differential uniformity (achieving values as low as 8), enhancing resilience against 
differential cryptanalysis, with the maximum differential probability as low as 0.0313 [12]. 
Figure 3 illustrates the progressive optimization of S-box nonlinearity across different GAN 
training configurations, demonstrating rapid convergence toward nonlinearity scores 
exceeding 100 with adjusted loss weights (e.g., L3 configuration) [12]. 
Ultimately, the increasing integration of intelligent algorithms within lightweight 
cryptographic design is driving the automated discovery of highly secure yet resource-efficient 
cryptographic components. 
 

 
Figure	3.	Comparison of S-Box Nonlinearity Generated by Different AI Methods 

3.2. Applications	in	Post‐Quantum	Cryptography	(PQC)	
Post-quantum cryptography (PQC), relying on computationally intensive mathematical 
problems such as Learning With Errors (LWE), Short Integer Solution (SIS), and code-based 
cryptography, is designed to withstand quantum computing threats. These computational 
complexities provide fertile ground for AI-driven analysis. 
AI techniques have notably impacted security evaluations of PQC schemes. For instance, Lauter 
et al. leveraged deep learning to exploit LWE instances employing sparse binary secret keys 
intended for computational efficiency. Initial attacks, such as “Salsa,” partially recovered secret 
keys from LWE instances (dimension n≤128, Hamming weight h≤4) using millions of ciphertext 
samples [15]. The subsequent “Picante” attack further scaled this approach to higher 
dimensions (up to n=350), successfully recovering most secret bits even at a relatively high 
sparsity (h≈ n/10), outperforming conventional lattice-based solvers in these specific scenarios 
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[16]. Nonetheless, such AI-based methods currently pose minimal immediate threats to 
standardized PQC schemes but highlight potential structural vulnerabilities in non-
standardized implementations [14]. Additionally, neural networks have been explored in code-
based cryptanalysis, such as syndrome decoding acceleration in the McEliece cryptosystem, 
and reinforcement learning approaches have been utilized for fine-tuning cryptographic 
parameters, optimizing performance-security trade-offs. While no AI-driven attacks have fully 
compromised standardized PQC algorithms to date, early research offers valuable insights into 
potential vulnerabilities and strengthens parameter selection strategies. Looking forward, AI is 
anticipated to assume a dual role—enhancing PQC security while concurrently presenting 
novel threats—necessitating sustained vigilance and research. 
 

 
Figure	4.	Comparison of AI Computational Resource Requirements in Post-Quantum 

Cryptanalysis 

3.3. Cryptographic	Protocol	Verification	
Verifying the security of complex cryptographic protocols (e.g., SSL/TLS, blockchain consensus 
protocols) is an inherently challenging task due to state-space explosion and inherent 
undecidability, often encountered by formal verification tools like ProVerif or Tamarin. 
Consequently, this process typically demands extensive computational resources and expert 
oversight. 
Recent advances explore AI-assisted protocol verification methodologies. Ohno and 
Nakabayashi developed a deep learning-based framework that automatically classified 
cryptographic protocol security. They generated extensive random protocol datasets labeled as 
secure or insecure via traditional formal verification tools, subsequently training neural 
networks capable of quickly predicting the security status of unseen protocols in linear 
computational time [15]. This approach demonstrated considerable efficiency and successfully 
identified known vulnerabilities within complex systems, including SSH and electronic voting 
protocols. Beyond verification, AI has facilitated the analysis of cryptographic protocols via 
automated fuzz testing, where reinforcement learning efficiently uncovers vulnerabilities by 
exploring protocol state spaces. Additionally, large language models (LLMs) have been 
employed effectively in smart contract auditing, rapidly identifying common security flaws and 
risks. Moreover, AI has contributed to the optimization of Zero-Knowledge Proof (ZKP) 
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protocols, aiding selection of optimal proving parameters and predicting bottlenecks within ZK 
circuits to streamline computational overhead. 
These advancements underscore AI’s growing integration into protocol verification and 
cryptographic design, significantly enhancing both security assurance and development 
efficiency. As protocols continue to grow in complexity, AI-driven methodologies are expected 
to become increasingly crucial for ensuring their trustworthiness. 

4. Challenges	and	Future	Directions	

4.1. Data	Dependency	and	Generalization	Ability	
The efficacy of deep learning models critically depends on large-scale, high-quality training 
datasets, which poses substantial challenges within cryptographic contexts. Collecting 
sufficient data for cryptanalysis can be exceedingly demanding and resource-intensive. For 
example, robust training of side-channel attack models typically requires capturing hundreds 
of thousands to millions of power traces [17]. Google researchers noted that even extensive 
datasets—such as a masked AES dataset comprising 65,000 compressed power traces totaling 
7GB—may remain inadequate for training reliable models against advanced security 
countermeasures, requiring datasets in excess of 1TB [17]. Such extensive data requirements 
present practical difficulties concerning data storage, labeling accuracy, and computational 
overhead. Moreover, many deep learning models assume attackers possess unrestricted access 
to cryptographic devices to gather extensive samples, a scenario often unrealistic in passive or 
limited-access attack environments. 
Additionally, existing datasets lacking diversity frequently lead to model overfitting, thereby 
severely impairing their effectiveness when confronted with variations in device-specific noise 
patterns or cryptographic implementations. Addressing these issues necessitates future 
exploration of specialized machine learning techniques such as few-shot learning, domain 
adaptation, and transfer learning, tailored specifically to cryptographic contexts to mitigate 
heavy data-dependency challenges. 

4.2. Explainability	and	Security	Risks	
AI models, particularly deep neural networks, often function as "black boxes," which introduces 
two critical issues within cryptographic applications: 
Interpretability in Cryptanalysis: When a neural network model, such as those used in neural 
differential cryptanalysis, identifies correct key guesses, it is frequently unclear which 
cryptographic weaknesses the model exploits. This lack of interpretability restricts 
cryptographers' ability to identify underlying vulnerabilities and thus hinders targeted 
improvements in cryptographic algorithms. Furthermore, it increases the risk of false positives, 
as AI models may inadvertently rely on coincidental statistical correlations unrelated to actual 
cryptographic weaknesses. Recent efforts to visualize and analyze intermediate neural network 
layers offer preliminary insights into model behavior, but substantial advancements in 
interpretability remain urgently needed [10]. 
AI systems themselves can become security vulnerabilities if subjected to adversarial attacks 
or data poisoning during training phases. If attackers introduce carefully engineered malicious 
data into training datasets, AI models could produce intentionally misleading outcomes, 
potentially compromising the integrity of AI-driven cryptographic designs. The growing 
adoption of AI further expands potential attack surfaces, as adversaries might attempt to 
reverse-engineer AI-based cryptographic components to uncover sensitive embedded data or 
hidden vulnerabilities. Therefore, ensuring the integrity and robustness of AI training 
procedures is crucial. Future research must emphasize the development of verifiable and 
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secure AI methodologies to bolster confidence in AI-assisted cryptographic assessments and 
designs. 

4.3. Integration	with	Emerging	Technologies	
The intersection of AI with emerging technologies presents both compelling opportunities and 
considerable challenges for cryptographic research. For example, quantum computing poses 
existential threats to classical cryptographic schemes. This raises critical questions: Could AI 
techniques mitigate threats posed by quantum cryptanalysis? Conversely, can quantum-
enhanced machine learning introduce fundamentally new cryptanalytic methods? Current 
research remains exploratory, as existing AI-driven attacks are inherently classical and may not 
directly translate to quantum contexts, warranting further exploration. 
Similarly, integrating AI with zero-knowledge proofs (ZKPs) has led to the emerging field of 
Zero-Knowledge Machine Learning (ZKML). ZKML techniques aim to verify AI model 
predictions cryptographically without revealing sensitive information. With AI models 
increasingly embedded within cryptographic protocols, such as blockchain smart contracts, 
ensuring the transparency, verifiability, and security of AI-driven decisions is paramount. Zero-
knowledge proofs could offer robust solutions for cryptographically validating AI outcomes, 
thus securely embedding AI into cryptographic infrastructures. 
Additionally, AI could significantly optimize post-quantum digital signature schemes by fine-
tuning key parameters, signature sizes, and verification efficiency. However, careful attention 
is necessary to ensure that such optimizations do not inadvertently compromise foundational 
cryptographic assumptions. Consequently, rigorous evaluation and testing of these integrated 
methodologies must accompany technological advances. 
In summary, the convergence of AI and emerging cryptographic technologies promises 
significant security and performance breakthroughs. Nonetheless, it also demands 
comprehensive, rigorous investigation to manage and mitigate potential security risks 
effectively. 

5. Conclusion	

Artificial intelligence has profoundly reshaped the landscape of cryptanalysis and 
cryptographic design. AI-driven methodologies—from automated pattern recognition in side-
channel analyses and efficient key recovery in differential fault analyses, to the intelligent 
optimization of cryptographic primitives and accelerated vulnerability detection in protocol 
verification—demonstrate unprecedented effectiveness. This survey has systematically 
explored recent advances in AI-driven cryptography, underscoring how AI has become a dual-
edged tool capable of both undermining existing cryptographic implementations and inspiring 
the development of more secure cryptographic systems. However, AI's reliance on large 
datasets, limited generalization capabilities, and interpretability constraints highlight essential 
limitations, emphasizing the necessity for cautious and controlled integration into 
cryptographic contexts. 
Future research should prioritize the following directions: 
1. Developing AI models capable of achieving reliable performance under limited data 
conditions, thus lowering barriers associated with data acquisition. 
2. Enhancing the transparency and interpretability of AI-driven cryptanalysis, integrating 
symbolic reasoning methods to facilitate verifiable AI outcomes. 
3. Exploring interdisciplinary integration of AI with quantum computing, zero-knowledge 
proofs, and other emergent technologies, fostering comprehensive cryptographic security 
solutions. 
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4. Establishing standardized benchmarks and open datasets, promoting uniformity and 
reproducibility within AI-driven cryptographic research. 
As the fields of AI and cryptography increasingly converge, they will mutually reinforce each 
other's theoretical foundations and practical methodologies. This symbiosis promises to drive 
next-generation security innovations, reinforcing our collective capacity to defend the digital 
landscape robustly. 
Ultimately, careful and considered integration of AI technologies into cryptographic practice 
will be critical to unlocking their full potential, thus establishing a more resilient and 
trustworthy cybersecurity infrastructure for the future digital world. 
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