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Abstract	
In	many	critical	scientific	and	engineering	fields,	controlling	low‐frequency	vibrations	is	
essential.	The	existing	triple	spring	quasi‐zero	stiffness	(QZS)	 isolator	shows	effective	
performance	in	low‐frequency	vibration	control;	however,	its	limited	QZS	range	leads	to	
reduced	 isolation	 bandwidth	 and	 deteriorated	 performance	 when	 structural	
displacement	 responses	 are	 large.	 To	 address	 this	 issue,	 this	 study	 proposes	 an	
improved	 QZS	 isolation	 system	 by	 partially	 replacing	 the	 vertical	 positive	 stiffness	
spring	with	a	shape	memory	alloy	(SMA)	spring.	The	secondary	stiffness	characteristics	
and	pseudoelasticity	of	the	SMA	spring	are	utilized	to	expand	the	QZS	working	range.	The	
dynamic	 equations	 of	 the	 modified	 system,	 which	 exhibit	 piecewise	 nonlinear	
characteristics,	are	solved	using	the	averaging	method	and	validated	numerically.	The	
influence	of	various	SMA	parameters	on	the	dynamic	response	of	the	improved	system	
is	analyzed.	The	results	demonstrate	that	the	SMA‐enhanced	triple	spring	QZS	isolator	
exhibits	 a	 broader	 QZS	 range	 and	 superior	 low‐frequency	 vibration	 isolation	
performance	compared	to	the	traditional	triple	spring	QZS	isolator.	
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1. Introduction	

Low-frequency vibration issues in major engineering projects cannot be overlooked. For 
instance, large-scale power machinery such as steam turbines and marine internal combustion 
engines typically exhibit vibrations characterized by high amplitude and low frequency [1]. 
Therefore, it is essential to address low-frequency vibration isolation under base excitation. 
However, traditional linear passive vibration isolators struggle to simultaneously satisfy the 
conflicting requirements of load-bearing capacity and low-frequency vibration isolation. To 
address this challenge, researchers worldwide have proposed the concept of quasi-zero 
stiffness (QZS) vibration isolators, which exhibit the feature of “high static stiffness and low 
dynamic stiffness” [2]. 
As early as 1958, Molyneux et al. [3] optimized the structure of a positive-stiffness elastomer, 
enabling the passive vibration control system to achieve a low system stiffness while meeting 
high load-bearing requirements. Subsequently, Alabuzhev et al. [4] introduced a negative-
stiffness device based on a linear spring and proposed the concept of quasi-zero stiffness. Platus 
[5], Peng Xian [6 - 8], Lee et al. [9], Santillan et al. [10], Han Junshu et al. [11] designed various quasi-
zero stiffness systems by changing different negative-stiffness mechanisms and conducted 
nonlinear time-history and energy analyses on them. The results showed that these systems 
designed by changing negative-stiffness mechanisms have better performance in low-
frequency vibration isolation. Later, Carrella et al. [12 - 13] designed a three-spring quasi-zero 
stiffness vibration isolator, which uses symmetrically arranged inclined springs to provide 
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negative stiffness and a vertical linear spring to provide positive stiffness, offering an effective 
solution for low-frequency vibration isolation. 
However, the quasi-zero-stiffness stroke of the tri-spring quasi-zero-stiffness vibration isolator 
is relatively short, leading to a significant rightward shift of the amplitude-frequency response 
peak under strong excitation, resulting in a reduced vibration isolation bandwidth and 
weakened low-frequency vibration isolation performance. Current research primarily 
addresses this issue by modifying the damping and the mechanical characteristics of the 
negative stiffness mechanism. Nevertheless, improvements to the negative stiffness mechanism 
often complicate its design, while replacing linear damping with nonlinear damping poses 
additional challenges for damper design. Recently, scholars have proposed improvements to 
the tri-spring quasi-zero-stiffness vibration isolator by altering the mechanical properties of 
the positive stiffness spring. Chen et al. [14] introduced a quasi-zero-stiffness vibration isolator 
featuring a positive stiffness configuration composed of a pair of torsion springs, a rod, and 
linear bearings. Wang et al. [15] designed a compact tri-spring quasi-zero-stiffness vibration 
isolator using a permanent magnet structure as the negative stiffness mechanism and a wave 
spring as the positive stiffness. The studies on these improved quasi-zero-stiffness vibration 
isolators demonstrate that, compared to conventional tri-spring quasi-zero-stiffness vibration 
isolators, the enhanced designs can achieve a broader vibration isolation range while 
maintaining the load-bearing capacity and ultra-low system stiffness. 
In this study, a shape memory alloy (SMA) spring is employed to replace part of the positive 
stiffness spring in the tri-spring quasi-zero-stiffness isolator (QZSI), resulting in a novel isolator 
termed the shape memory alloy-tri-spring quasi-zero-stiffness isolator (SMA-QZSI). The SMA-
QZSI primarily leverages the secondary stiffness characteristics and pseudoelastic mechanical 
properties of the SMA spring to extend the quasi-zero-stiffness stroke of the tri-spring isolator, 
enhance its damping energy dissipation capacity, and maintain deformation suppression under 
large deformations. The average method is utilized to analytically solve the piecewise dynamic 
equations of the SMA-QZSI system, yielding the amplitude-frequency response equation. The 
dynamic behavior and low-frequency vibration isolation performance of this isolation system 
are investigated through numerical calculations, theoretical analysis, and experimental 
validation. 

2. Working	Principle	of	the	SMA‐QZSI	System	

2.1. Structure	of	the	SMA‐QZSI	
The structure of the proposed SMA-QZSI is illustrated in Figure 1. This vibration isolator 
primarily comprises a positive stiffness component and a negative stiffness component. The 
positive stiffness component consists of a vertical linear spring and an SMA spring assembly. 
The SMA spring assembly integrates the following elements: a guide sleeve, upper cover, lower 
cover, actuator rod, blocking ring, upper tension disk, lower tension disk, and SMA springs. The 
negative stiffness component is mainly composed of a lateral spring, telescopic linkage, ring-
type hinge support, pin shaft, and vertical column. 
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Figure	1. Structure of SMA-QZSI 
 

2.2. Working	principle	of	SMA‐QZSI	
According to the structure of the classic three spring quasi zero stiffness isolation device, its 
overall stiffness is composed of two parts: positive stiffness and negative stiffness. As shown in 
Figure 2 (a), the positive stiffness of QZSI is provided by linear springs, and the negative 
stiffness is provided by transverse springs. Therefore, it can be designed to exhibit zero stiffness 
at the equilibrium position. However, such a design can lead to the problem of low stiffness and 
weak bearing capacity when the isolator is under static load or small deformation. When the 
displacement of the isolator is large, the stiffness of the transverse spring will change from 
negative stiffness to positive stiffness, and the overall stiffness of the isolator will significantly 
increase, affecting the isolation performance. The seismic isolator proposed in this article can 
improve this situation through reasonable design. As shown in Figure 2 (b), due to the low 
secondary stiffness characteristics of SMA springs, when connected in parallel with positive 
stiffness springs, the displacement range of the isolator with quasi zero stiffness properties can 
be widened. When the displacement of the isolation object continues to increase, the stiffness 
of the SMA spring increases again, which can play a role in suppressing displacement under 
large deformations. 

 

            
(a)QZSI                                                (b)SMA-QZSI 

Figure	2.	Composition of force displacement relationship between QZSI and SMA-QZSI 

2.3. Mechanical	Model	of	SMA‐QZSI	
Figure3(a) shows the mechanical model of the SMA-QZSI system under basic excitation, where 
n represents the proportion of positive stiffness provided by the initial stiffness of the SMA 
spring in the system. Figure3(b) shows the force displacement relationship of the SMA spring 
device. Due to the special configuration of the damper, the SMA spring is in a tensile state 
regardless of whether it is in tension or compression. Therefore, the force displacement 
relationship of the SMA spring device has a center symmetry relationship as shown in the figure. 
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In Figure3(b) ksma(x) representing the stiffness of SMA at different deformation stages,xms 
representing the displacement of SMA at the beginning of martensitic transformation,xmf 
indicating the end displacement of SMA martensitic transformation, xas  represents the 
displacement at the beginning of SMA martensitic reverse phase transformation,xaf indicate the 
displacement at the end of SMA martensitic reverse phase transformation.fms、fmf、fas、faf 
indicate the corresponding restoring force.ksm1、ksm2、ksm3、ksm4 indicate the stiffness of the 
corresponding stage. The pattern in the third quadrant is the same as it. 

 

 
(a) The dynamic model of SMA-QZSI 

 
(b) The constitutive model of SMA 

Figure	3.	SMA-QZSI dynamic model and SMA mechanics displacement relationship 
 

3. SMA‐QZSI	Dynamic	Performance	Analysis	

This chapter establishes dynamic equations based on the established SMA-QZSI dynamic model, 
and then solves the dynamic equations using the averaging method to derive the amplitude 
frequency response equation and displacement transfer rate expression of the isolation system, 
and conducts parametric research. 

3.1. Establishment	of	SMA‐QZSI	kinetic	model	
Based on Figure 3 (a) and the D'Alembert principle, the dynamic equation of the isolation 
system can be derived, namely: 
 

2
v f cos( )mz c z F mY t                                                            (1) 
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                                                (2) 

 
Equation (1) is the desired dynamic equation, where m is a quality block M the quality, Y is the 
amplitude of the fundamental excitation given, z is the relative displacement of the mass block 
under basic excitation, cv  is damping,  ω  is excitation frequency. In equation (2), Ff  is the 
restoring force exerted on the mass block under basic excitation,ks  is the stiffness of the 
transverse spring. a is the length of the transverse spring when it is horizontally compressed, 
ka is the vertical linear spring stiffness, and kv=ksm1+ka，, then ksm1=nkv.L is the original length 
of the transverse spring, and Fsma is the restoring force of the SMA spring.The relationship 
between the excitation frequency ω and the natural frequency ω0  of the system can be set 
as ω2=ω0

2ሺ1+εσ1ሻ，where εσ1  is a small positive quantity. Therefore, equation (1) can be 
written as: 
 

2 2 2
v f 0 1cos( ) (1 )mz c z F m z mY t m z                                            (3) 

 
Substitute equation (2) into equation (1) and let 1 s v/k k  , a / L  , v 0/ 2c m  ,

f f v/ Lf F k , / Lz z , 0t  , 0/   , / LY  , sma sma v/ Lf F k , by nondimensionalizing 
and organizing equation (3), we can obtain: 
 

 2 2
sma 1 12 2

1
2 (1 ) 2 ( 1) cos( ) (1 )z z z n z f z z

z
      


          


         (1) 

 
In order to facilitate the analytical solution of the dynamic equations, the nonlinear terms in the 
vicinity of 0z   are approximated by Taylor series expansion

3 5 71 1 1
3 5 7

3 5

4 8
z z z z

  
  

   ,equation (4) can be rewritten as: 

 

         2 2
sma 0 12 (1 ) cos( ) (1 )z z z n z f H z                              (2) 

 

Among them: 3 5 71 1 1
0 3 5 7

3 5

4 8
H z z z z

  
  

      

3.2. Average	method	for	solving	
Let the main resonance response of the system be solved as: 
  

                                 cos( )z A                                                                         (3) 
 

Among them :A	 Expressing amplitude,  indicates phase difference. Order     , 
according to the average method, solve equation (5) as follows:     
 

2 2
0 10

2 (1 ) cos( ) (1 ) sind

d 2

smaz n z f H z dA


    

 

             


          (4) 
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Substitute equation (6) into equations (7) and (8), and let 
d d

0
d d

A 
 
  ,The amplitude 

frequency response equation can be obtained: 
 

              
22

22 4 2
φ A4 2 2

2 2

n
A B F A B

    
 

      
 

                                    (9)  

 
At the same time, the displacement transfer rate of the system can be solved, that is:      

 

               
2 2 2 cosA A

TD
  


 

                                                               (6) 

 
  

Among them :
2 4 61 1 1

3 5 7

3 15 175

8 64 1024
F A A A

  
  

    

 
2 A1 ms

A sma0
A2 ms mf

,01
sin d

,2

B A x
B f

B x A x




 

      
  

A1 0B   

sm1 sm2 ms af ms
A2

( )( )
( 1)

k k x x x
B

A
 

   

 
2 φ1 ms

φ sma0
φ2 ms mf

,01
cos d

,2

B A x
B f

B x A xA





       
  

φ1 2

n
B   

sm2 sm1 ms af ms af
φ2 ms af2

ms af af

2 2 2 2
ms af ms

ms af2 2

( )(2 )
[ ( )

2

arccos arccos

arccos ]
2

k k x x A x x
B A x x

A A

A x x x
A A

A A

A x A x x n
x x A

A A A


   

  

        
   

       
 

 

2
2

φcos 2 ( ) /
2 2

n
A B F

      

3.3. Comparison	of	Vibration	Isolation	Performance	between	SMA‐QZSI,	QZSI,	
and	Linear	Systems	

Figure 4 compares the damping ratio 0.15  , Base Excitation 0.2  , stiffness ratio of SMA 
spring 2 0.2  , yield displacement of SMA spring 0.3msx  , proportion of initial stiffness of SMA 
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spring 0.6n  , The amplitude frequency response curve and displacement transfer rate curve 
of SMA-QZSI, QZSI, and linear systems. The results indicate that compared to linear systems, 
both QZSI and SMA-QZSI systems have smaller resonance frequencies and amplitudes. The 
resonance amplitude of the amplitude frequency response of the SMA-QZSI system is 37% of 
that of the linear system, the resonance amplitude of the displacement transfer rate is 46% of 
it, and the resonance frequency is 50% of it. Compared with the QZSI system, the resonance 
amplitude of the amplitude frequency response, displacement transfer rate, and isolation 
starting frequency of the SMA-QZSI system are relatively small. The resonance amplitude of the 
amplitude frequency response is 78% of that of the QZSI system, the resonance amplitude of 
the displacement transfer rate is 77% of that of the QZSI system, and the resonance frequency 
is reduced by 21%. Prove that the system has better isolation performance compared to 
ordinary three spring isolation systems. 
 

 
(a) amplitude frequency response                       (b) displacement transfer rate 

Figure	4. QZSI, Comparison of Vibration Isolation Performance between SMA-QZSI and Linear 
Systems 

 

3.4. The	influence	of	different	parameters	on	the	isolation	performance	of	the	
system	

According to formulas (9) and (10), it can be seen that both the amplitude frequency response 
and displacement transfer rate curves are affected by  , , 2 ,n and msx  the impact. Figures 5-
9 respectively investigate the effects of changing different parameters on the isolation 
performance of the system. 
3.4.1. Effects	of	Changing	n	on	Vibration	Isolation	Performance	
The variation pattern of the system curve under the condition of changing n while keeping other 
parameters constant is shown in Figure 5. As n increases, the resonance peak gradually 
decreases, especially when n is less than 0.1, the decrease in amplitude frequency response 
resonance peak and transmission rate peak is particularly significant, indicating that increasing 
the proportion of a small number of SMA springs is more helpful in improving the isolation 
performance of the system. 
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(a) amplitude frequency response                      (b) displacement transfer rate 

Figure	5. The influence of different n values on the isolation performance of the system 
 

3.4.2. Effects	of	Changing 2 on	Vibration	Isolation	Performance	

Under other constant parameter conditions, the variation pattern of the impact of changing 2
on the system curve is shown in Figure 6. As the 2 decreases, the resonance peak of the 
amplitude frequency response gradually increases, and the value of displacement transfer rate 
decreases more rapidly after the peak, indicating that the isolation effect gradually improves. 
Therefore, reducing the stiffness of the second section of the SMA spring is more conducive to 
enhancing the isolation performance of the system. 
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(a) amplitude frequency response                      (b) displacement transfer rate 

Figure	6.	The influence of different 2 values on the isolation performance of the system 

 

3.4.3. Effects	of	Changing msx on	Vibration	Isolation	Performance	

Under other constant parameter conditions, the variation pattern of the impact of changing the 
parameter msx on the system curve is shown in Figure 7. From the graph, it can be seen that the 

smaller the value of parameter msx , the more the amplitude frequency response and 
displacement transfer rate of the system reach their peak values at smaller frequencies, and the 
peak values are smaller. This indicates that changing the SMA spring to enter the second stage 
stiffness as soon as possible is more conducive to enhancing the isolation performance of the 
system. 
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(a) amplitude frequency response                      (b) displacement transfer rate 

Figure	7. The influence of different msx values on the isolation performance of the system 

 

3.4.4. Effects	of	Changing on	Vibration	Isolation	Performance	

Under other constant parameter conditions, the variation pattern of the impact of changing the 
parameter on the system curve is shown in Figure 8. From the graph, it can be seen that as
increases, the peak values of amplitude frequency response resonance and displacement 
transfer rate gradually decrease, indicating that increasing the damping ratio appropriately can 
help improve the isolation performance. 

 

 

(a) amplitude frequency response                      (b) displacement transfer rate 
Figure	8. The influence of different values on the isolation performance of the system 

 
3.4.5. Effects	of	Changing on	Vibration	Isolation	Performance	
Under other constant parameter conditions, the variation of the system curve by changing the 
parameter  is shown in Figure 9. From the graph, it can be seen that as the increases, the 
resonance peak gradually increases, and the peak of the transmission rate becomes larger and 
then decreases more slowly. Moreover, with different values, the amplitude of the high-
frequency stable amplitude response also varies, indicating that the system has better isolation 
performance under small displacement excitation. 
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(a) amplitude frequency response                      (b) displacement transfer rate 
Figure	9.	The influence of different values on the isolation performance of the system 

 

3.5. Experimental	verification	
3.5.1. Parameter	Design	of	Vibration	Isolator	Prototype	
To verify the vibration isolation performance of SMA-QZSI, a prototype of the vibration isolator 
was made and subjected to vibration table testing. The ordinary compression spring material 
in the experimental model is spring steel; The SMA spring used is a NiTi alloy SMA spring 
produced by Xi'an Saite Development Co., Ltd. Zhang Zhenhua et al. [16] conducted loading and 
unloading tests on this material. The mass block is processed into 6kg, and the vertical 
compression spring stiffness is ak =1.2N/mm, SMA spring sm1k  is 1.8N/mm,lateral compression 

spring stiffness sk is 3N/mm. To ensure the quasi zero stiffness condition of the seismic isolator, 
it can be obtained that a=44mm, L =66mm. 
3.5.2. Test	Plan	
This experiment mainly uses a sweep frequency test under sinusoidal excitation to obtain the 
amplitude frequency response of the isolation system, and then determines the displacement 
transfer rate of the system. Through the system's standing frequency test, the time history 
response of the system under different excitation frequencies is obtained to verify the isolation 
performance of the system. Mainly includes: 
(1) Conduct tests with excitation displacements of 4mm, 6mm, and 8mm within the frequency 
range of 2-10 Hz using a vibration table, and record the test data. 
(2) Under the condition of an excitation displacement of 6mm, dynamic tests were conducted 
at excitation frequencies of 3 Hz, 5 Hz, and 7 Hz, and data was recorded. 

 

 
Figure	10.	Physical and experimental site of quasi zero stiffness isolator 
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3.5.3. Test	conditions	and	result	analysis	
The vibration isolator was tested within the frequency range of 2-10 Hz with excitation 
displacements of 4mm, 6mm, and 8mm. The test results are shown in Figure 11. From the graph, 
it can be seen that as the excitation displacement increases, the peak value of the transmission 
rate at resonance will increase, but then quickly decrease, demonstrating the good isolation 
performance of the isolator. From the figure, it can be seen that there is not much time 
difference between the peak transmission rate when the excitation is 4mm and when the 
excitation is 6mm, which is caused by friction between the components. When the excitation 
amplitude is small, the transverse spring fails to provide good negative stiffness at low 
frequencies. 

 

 
Figure	11.	Displacement transmission rate curve under different excitation displacements 

 
Then, different frequency stationary frequency tests were conducted on the isolator, and the 
test results are shown in Figure12. From the graph, it can be seen that as the frequency 
increases, the range of displacement changes rapidly decreases, and the peak value of the 3Hz-
7Hz transmission rate decreases by 63%, indicating that the isolation performance of the 
isolator is relatively excellent. 

 

Figure	12.	Time history curves at different frequencies 
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4. Conclusion	

This article utilizes the high static and low dynamic characteristics of quasi zero stiffness 
isolators, the mechanical properties of SMA springs with pseudo elasticity, and the construction 
of classical three springs to design an SMA-QZSI. And establish a dynamic model of the isolator, 
derive equations for amplitude frequency response and displacement transfer rate. Next, 
process the SMA-QZSI components and conduct dynamic tests on a vibration table to verify 
their vibration isolation performance. Draw the following conclusion: 
(1) Perform vibration isolation performance analysis on SMA-QZSI and compare it with linear 
isolators and classical three spring quasi zero stiffness isolators. The results showed that 
compared with the QZSI system and its corresponding linear system, the resonance amplitude 
and frequency in the amplitude frequency response and displacement transfer rate of the SMA-
QZSI system decreased. However, compared with the QZSI system, the resonance amplitude of 
the amplitude frequency response of the SMA-QZSI system decreased by 22%, the common 
amplitude value of the displacement transfer rate decreased by 23%, and the resonance 
frequency decreased by 21%. This indicates that the force transmitted to the structure is 
smaller, further verifying the excellent low-frequency vibration isolation performance of SMA-
QZSI. 
(2) By processing the isolator model and conducting vibration table tests, the changes in 
transmission rate when the excitation displacement changes under a predetermined excitation 
frequency were studied; And with an excitation displacement of 6mm, the time history curve of 
the isolator was changed by changing the excitation frequency. Both experimental results 
showed excellent isolation performance of the isolator. 
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